跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳旻樺
研究生(外文):Min-Hua Wu
論文名稱:應用於醫用超音波影像前端接受電路之研製
論文名稱(外文):Development of CMOS Receiver Front-ends for Ultrasound Imaging Applications
指導教授:呂良鴻
指導教授(外文):Liang-Hung Lu
口試委員:林宗賢黃俊郎
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:超音波影像前端接收電路超音波接收電路可調增益放大器
外文關鍵詞:ultrasoundreceiver front-endCMOSultrasound imagingvariable gain amplifiertime gain compensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於安全性及低成本的考量,超音波影像一直是醫師在臨床診斷中的一大利器。由於超音波影像系統需要相當高的動態範圍及信噪比,一般都使用III-V半導體製程和BiCMOS製程進行前端接受器的設計。近年來隨著MEMS技術的進步,已有許多研究團隊開始使用標準的CMOS製程研製超音波探頭。為了實現單晶片系統整合以降低設計複雜度並降低成本,開發使用CMOS製程的超音波前端接受器是必要的。在本論文中,多種的電路架構與技巧被提出與實現以提高系統的動態範圍並提升電路的線性度。本論文以六個章節所構成。第一章會對超音波成像系統進行基本的介紹,第二章則對超音波前端接收器的設計流程進行說明。第三章提出一個以0.18-um標準互補式金氧半導體製程實現的超音波前端接收器。並整合類比數位轉換器以提供數位訊號輸出。為了提供足夠的動態範圍,本接收器提供了三種增益模式,並使用指數壓控放大器提供進行時間增益補償的可能性。第四章討論在進行單晶片系統整合及多通道設計時會遇到的訊號干擾問題。本章提出一種基底雜訊消除技巧以降低訊號受到基底雜訊影響的程度,並且使用65奈米CMOS製程實作一個四通道的超音波前端接收器以驗證效果。為了降低電路的複雜度及面積,提出了一個以單一放大器同時實現可調增益放大器及濾波器的功能的全差動操作可程式化增益濾波器。第五章包括一個高線性度的超音波前端接收器之設計與實作結果。藉由使用共閘共源低雜訊放大器,可將訊號直接轉為全差動操作。為了提高前端接受器的輸出範圍及線性度,提出一種新穎的電容耦合式可程式化增益放大器,利用切換回授電容的方式以達到改變增益的效果。
最後,在第六章會進行本論文的總結。

In diagnostic medicine, ultrasound imaging is one of the most widely used diagnostic tools due to its safety and relatively low cost. To facilitate system-on-chip implementation to minimize the cost, the development of CMOS ultrasound receiver front-end is essential. In this thesis, several architectures and circuit techniques are presented to increase the dynamic range and the linearity of the receiver. The first chapter introduces the fundamentals of an ultrasound imaging system, including a brief introduction to the whole system and the architecture of the receiver. Chapter 2 illustrates the challenges in ultrasound receiver design and the link budget calculation is demonstrated for system optimization. In Chapter 3, a highly integrated ultrasound receiver front-end is implemented by using a standard 0.18-um CMOS process. The high speed analog-to-digital converter is integrated in this design to provide digital data output. Moreover, in order to increase the dynamic range, the proposed front-end circuit provides three gain modes and a linear-in dB variable gain amplifier is employed to perform time gain compensation technique. In chapter 4, the signal integrity problem in system-on-chip and multichannel designs will be discussed. In this chapter, a feed-forward substrate noise cancellation scheme is proposed to suppress substrate crosstalk phenomenon. A quad-channel ultrasound receiver front-end is demonstrated in 65-nm CMOS process. In order to reduce the complexity and area of the circuit, a fully-differential programmable gain anti-aliasing filter is proposed by using a single OPAMP. The design and experimental results of a high-linear ultrasound receiver front-end are illustrated in Chapter 5. By using a CG-CS balun low-noise amplifier, the received single-ended signal can be converted to differential signal directly. To improve the linearity and output swing range, a capacitively-coupled programmable gain amplifier is proposed. The gain of the amplifier can be adjusted by controlling the switched-capacitors.

Abstract…………………………………………………………………………………….……................................ I
Table of Contents……………………………………………………………………….………………………..…...V
List of Figures………………………………………………………………………….……………...………........VII
List of Tables……………………………………………………………………………………………………........X

CHAPTER 1 INTRODUCTION 1
1.1 INTRODUCTION TO MEDICAL ULTRASOUND IMAGING…………………..………………1
1.1.1 APPLICATION TYPES OF SONOGRAPHY……………………………………………2
1.1.2 INTRODUCTION TO ULTRASOUND IMAGING SYSTEM…………………………..3
1.2 ARCHITECTURES OF THE ULTRASOUND RECEIVER………………………..….………….4

CHAPTER 2 BASICS AND DESIGN CHALLENGES OF A ULTRASOUND RECEIVER 6
2.1 DYNAMIC RANGE ………………..…………………………………………………………...…6
2.2 LINEARITY………………………………………………………………………………………...8
2.2.1 HARMONIC DISTORTION…………………………………………………………..….8
2.2.2 INTERMODULATION DISTORTION…………………………………………….....….9
2.3 SUBSTRATE NOISE COUPLING……………………………………………………….………12
2.4 FUNDAMENTALS OF TRANS-IMPEDANCE AMPLIFIER AND SINGLE-TO-DIFFERENTIAL CONVERTER………………………………………………………………….14
2.5 FUNDAMENTALS OF LINEAR-IN-DB VARIABLE GAIN AMPLIFIER……..………...…….18
2.6 FUNDAMENTALS OF ANTI-ALIASING FILTER……………………………………………...21
2.7 LINK BUDGET…………………………………………………………………………………...23

CHAPTER 3 A HIGHLY INTEGRATED CMOS RECEIVER FOR ULTRASOUND APPLICATIONS 25
3.1 INTRODUCTION ...………………………………………………………………………………25
3.2 LINK BUDGET CALCULATION………………………………………………………………..26
3.3 CIRCUIT IMPLEMENTATION OF THE PROPOSED ULTRASOUND RECEIVER….............27
3.3.1 TIA AND PROGRAMMABLE-GAIN S-TO-D CONVERTER……………………..…28
3.3.2 LINEAR-IN-DB AMPLIFIER…………………………………………………………..29
3.3.3 SALLEN-KEY FILTER…………………………………………………………………30
3.3.4 SUCCESSIVE APPROXIMATED ANALOG-TO-DIGITAL CONVERTER………….32
3.4 EXPERIMENTAL RESULTS……………………………………………………………………..35
3.5 CONCLUSION……………………………………………………………………………………39

CHAPTER 4 A QUAD-CHANNEL ULTRASOUND RECEIVER FRONT-END WITH SUBSTRATE NOISE SUPPRESSION CIRCUIT 40
4.1 INTRODUCTION…………………………………………………………………………………41
4.2 LINK BUDGET CALCULATION……………………….……………………………………….42
4.3 THE PROPOSED SUBSTRATE NOISE CANCELLATION SCHEME………………...……….43
4.4 CIRCUIT IMPLEMENTATION OF THE PROPOSED ANALOG FRONT-END……...……….44
4.4.1 NOISE CANCELLING LNA……………………………………………………………45
4.4.2 PROGRAMMABLE-GAIN SALLEN-KEY FILTER…………………………………..46
4.5 EXPERIMENTAL RESULTS……………………………………………………………………..50
4.6 CONCLUSION……………………………………………………………………………………55

CHAPTER 5 A DUAL-CHANNEL ULTRASOUND FRONT-END WITH HIGHLY LINEAR CHARACTERISTIC 56
5.1 INTRODUCTION…………………………………………………………………………………56
5.2 LINK BUDGET CALCULATION……………………..…………………..……………………..57
5.3 CIRCUIT IMPLEMENTATION………………………………………..…………………………58
5.3.1 CG-CS BALUN LNA……………………………………………………………………59
5.3.2 CAPACITIVELY-COUPLED PROGRAMMABLE-GAIN AMPLIFIER…………...…62
5.4 EXPERIMENTAL RESULTS........………………………………………………………………..68
5.5 CONCLUSION…………………….…………………………………………………………...…72

CHAPTER 6 CONCLUSION 73

BIBLIOGRAPHY 75


[1]E. Brunner, Ultrasound system consideration and their impact on front-end components, Norwood, MA: Analog Devices, Inc., 2007 [Online]. Available: http:// www.analog.com/library/analogDialogue/archives/3603/ultrasound/UltrasoundFrontend.pdf
[2]R. Reeder and C. Petersen, The AD9271—A revolutionary solution for portable ultrasound, Norwood, MA: Analog Devices, Inc., 2007. [Online]. Available: http:// analogdiablog.blogspot.com/2007/06/ad9271a-revolutionary-solution-for.html
[3]Low-power, High-performance, fully integrated octal ultrasound receiver, San Jose, CA: Maxim, Inc., 2012. [Online]. Available: http://www.maxim-ic.com/datasheet/index.m vp/id/6538
[4]Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 20 June 2012, 10:55 UTC. Encyclopedia on-line. Available from http://en.wikipedia.org/wiki/Attenua tion. Internet. Retrieved 10 July 2012
[5]B. Herman and G. Harris, Models and regulatory considerations for the transient temperature rise during diagnostic ultrasound pulses. Ultrasound in Medicine and Biology, 28(9):1217-1224, 2002.
[6]T. Tsukada, Y. Hashimoto, K. Sakata, H. Okada and K. Ishibashi, “An on-chip active decoupling cirucit to suppress crosstalk in deep-submicron CMOS mixed-signal SoCs ,” IEEE J. Solid-State Circuits, vol. 40, pp. 67-79, Jan. 2005.
[7]J. P. Z. Lee, F. Wang, A. Phanse and L. C. Smith, “Substrate cross talk noise characterization and prevention in 0.35μm CMOS technology,” in Proc. IEEE Custom Integr. Circuit Conf., May 1999, pp. 479-482.
[8]H. -M. Chao, W.-S. Wuen and K. -A. Wen, “An active guarding circuit design for wideband substrate noise suppression,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 11, pp. 2609-2619, Nov. 2008.
[9]P. Orsatti, F. Piazza and Q. Huang, “A 71-MHz CMOS IF-baseband strip for GSM,” IEEE J. Solid-State Circuits, vol. 31, pp. 104-108, Jan. 2000.
[10]W. M. Christopher, “A variable gain CMOS amplifier with exponentialgain control,” in VLSI Circuits Tech. Dig. Symp., Jun. 2000, pp. 146–149.
[11]W. C. Song, C. J. Oh, G. H. Cho, and H. B. Jung, “High frequency/high dynamic range CMOS VGA,” Electron. Lett., vol. 36, no. 13, pp. 1096–1098, Jun. 2000.
[12]H. D. Lee, K. A. Lee, and S. Hong, “Wideband VGAs using a CMOS transconductor in triode region,” in Proc. 36th Eur. Microw. Conf., Sep. 2006, pp. 1449–1452.
[13]C.-C. Hsu and J.-T. Wu, “A 125 MHz -86 dB IM3 programmable-gain amplifier,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2002, pp. 32–35.
[14]C.-C. Hsu and J.-T. Wu, “A Highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier,” IEEE J. Solid-State Circuits, vol. 38, pp. 1663-1670, Oct. 2003.
[15]L. -S. Lai, H.-H. Hsieh, P. -S. Weng and L.-H. Lu, “An experimental ultra-low-voltage demodulator in 0.18μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 7, pp. 1445-1458, Jul. 2007.
[16] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure” IEEE J. Solid-State Circuits, vol. 45, pp. 731-740, Apr. 2010.
[17]Y. Wang, M. Koen, and D. Ma, “Low-Noise CMOS TCG amplifier with adaptive gain control for ultrasound imaging receivers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 1, pp. 26–30, Jan. 2011.
[18]S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts and B. Nauta, “Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Cancelling and Distortion-Cancelling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.
[19]B. Nauta, “Single to differential converter,” U.S. Patent 5,404,050, Apr. 4, 1995, European Patent 92 20 38 39.3, Dec. 11, 1992.
[20]K. Bult and H. Wallinga, “A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation,” IEEE J. Solid-State Circuits, vol. SC-22, no. 3, pp. 357–365, Jun. 1987.
[21]P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits. Norwell, MA: Kluwer, 1998, pp. 201–301.
[22]Q. Fan, F. Sebastiano, J. H. Huijsing and K. A. A. Makinwa, “A 1.8μW 60nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1534–1543, Jul. 2011.
[23]K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements. New York: Taylor & Francis, 2006.
[24]F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
[25]O. Watanabe, S. Otaka, M. Ashida, and T. Itakura, “A 380-MHz CMOS linear-in-dB signal-summing variable gain amplifier with gain compensation techniques for CDMA systems,” in VLSI Circuits Tech. Symp. Dig., Jun. 2002, pp. 136–139.
[26] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊