|
[1]MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297. [2]Bezdek, J.C. (1973). Fuzzy mathematics in pattern classification, PhD dissertation, Center for Applied Mathematics. Ithaca, NY: Cornell University. [3]Dasarathy, B.V. (1991). Nearest neighbor (NN) norms: NN pattern classification techniques. LA: IEEE Computer Society Press. [4]Weiss, S.M., & Kulikowski, C.A. (1991). Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. San Francisco: Morgan Kaufmann. [5]Wettschereck, D., & Dietterich, T.G. (1994). Locally adaptive nearest neighbor algorithms. Advances in Neural Information Processing Systems, 6, 184-191. [6]McLachlan, G.J., & Krishnan, T. (1997). The EM Algorithm and Extensions. NJ: Wiley Publisher. [7]Mackinnon, M.J., & Glick, N. (1999). Data mining and knowledge discovery in databases - An overview. Australian and New Zealand Journal of Statistics, 41(3), 255-275. [8]Pei, J.H., Fang, J.L., & Xie, W.X. (1999). An initialization method of cluster centers. Journal of Electronics and Science, 21(3), 320-325. [9]Webb, R.A. (2002). Statistical Pattern Recognition (2nd ed.). NJ: Wiley Publisher. [10]Hu, Y., & Chen, G. (2003). An effective cluster analysis algorithm based on grid and intensity. Computer Applications, 23(12), 64-67. [11]Wu, W., Xiong, H., & Shekhar, S. (2003). Clustering and information retrieval. Netherlands: Kiuwer Academic Publisher. [12]Alpaydin, E. (2004). Introduction to Machine Learning. MA: The MIT Press Publisher. 133-150. [13]Huang, J.Z., Ng, M.K., & Rong, H., Li, Z. (2005). Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 657-668. [14]Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491-502. [15]Bao, Z., Han, B., & Wu, S. (2006). A general weighted fuzzy clustering algorithm. Lecture Notes in Computer Science, 4042, 102-109. [16]He, Y., Pan, W., & Lin, J. (2006). Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data. Computational Statistics and Data Analysis, 51(2), 641-658. [17]Jiawei, H., & Micheline, K. (2006). Data mining: concepts and techniques (2nd ed.). SF: Morgan Kaufmann Publisher. [18]Tan, P.N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Boston: Addison-Wesley Publisher. 487-559. [19]Chiu, C.C., & Tsai, C.Y. (2007). A weighted feature C-means clustering algorithm for case indexing and retrieval in cased-based reasoning. Lecture Notes in Computer Science, 4570, 541-551. [20]Tsai, C.Y., & Chiu, C.C. (2008). Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm. Computational Statistics and Data Analysis, 52(10), 4658-4672. [21]Zou, K., Wang, Z., & Hu, M. (2008). An new initialization method for fuzzy c-means algorithm. Fuzzy Optimization and Decision Making, 7(4), 409-416.
|