跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:辜雅勤
研究生(外文):Ya-Chin Ku
論文名稱:開口運動對於不同形式的下顎植體支持式固定義之應力分佈影響―有限元素分析
論文名稱(外文):Effect of implant-supported fixed prostheses on mandibular deformation during opening movement― Finite element analysis
指導教授:林哲堂林哲堂引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系碩博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:有限元素分析法牙科植體下顎形變下顎植體支持式
外文關鍵詞:finite element methoddental implantmandibular deformantionimplant supported fixed partial denture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
下顎在作開口運動時,會產生一形變現象,並導致下顎骨寬度的減少。當下顎欲以植體支持式固定義齒贋復時,由於骨頭與植體為一堅硬連結,若以ㄧ單位式跨牙弓式贗復物加以連結時,會導致下顎形變現象的改變,並且將在植體與骨頭交接面,與贋復物上產生應力的集中,將來可能導致骨整合的失敗與贋復物的斷裂或鬆脫。
本實驗利用有限元素分析法,探討在進行開口運動時,植體支持式固定義齒對於下顎形變的影響。本研究分別比較擁有正常齒列之下顎骨及以五個不同設計的植體贗復物連結之下顎骨模型。分別是僅有八支植體之下顎模型及以一至四單位式贗復物連結之下顎模型,網格化後代入相同的邊界條件與肌肉施力後,計算並比較下顎的形變量與贗復物及植體的應力分佈情形。
實驗結果發現,擁有正常齒列的下顎骨及未以義齒連接的植體贗復下顎骨,在作張口運動時,其寬度變化在大臼齒區域分別為0.212 mm 與0.249 mm,且變化量由後往前遞減,符合臨床上的觀察。比較不同贗復物對下顎形變的影響,結果發現贗復物若跨越下顎中心聯合處,則會造成下顎形變量變小,且跨越下顎中心聯合之贗復物越短,對下顎骨的形變限制越大。觀察不同贗復物在開口運動時對植體及贗復物的應力分佈影響,可發現較長且較彎曲的贗復物會產生較大的應力集中,而若在下顎中心聯合區域將贗復物分割,應力集中狀況則會有所改善;與一單位式贗復物比較,二、三、四單位式贗復物的應力分佈較為分散。比較植體上的應力分佈,可發現開口運動時,會在以一單位式贗復物連接的遠心端植體頸部產生最大的應力集中,而四單位式贗復物的應力分布情形則較為分散。
結果顯示,下顎若以不同形式的固定義齒連接植體,會影響下顎的形變,而且在植體與骨頭交界面產生應力集中。因此,以植體贋復作為下顎全口無牙患者的治療,對贗復物的設計必須有完整且審慎的考量。
Clinical findings indicated that the geometrical shape of the mandible was deformed during mouth opening. This deformation results in a reduction in the width of the mandibular arch. According to the rigid connection of dental implant and bone tissue, some authors indicated that edentulous mandible treated with implants supported fixed partial denture and connected by a one piece cross-arch superstructure could generate dangerous stresses both at bone-implant interface and prostheses superstructure, and high stress concentration might lead to failure of the osseointegration and the fracture or loosening of the prostheses.
In this study, a finite element method was used to evaluate the effect of different types of implant supported fixed partial dentures on the mandibular deformation. The mandible model with natural dentition and five mandible models with implants and prostheses were developed. Five mandible models treated with : only eight implants and eight implants connected by one, two, three and four-piece superstructures. Additionally, the same forces and orientations of masticatory muscles were considered to simulate opening movement in this study. Then, the stress distribution of the prostheses and implants in different designs of implant-supported prostheses were analyzed for discussion.
Our results demonstrated that the mandible models with natural dentition and implants presented a decrease in mandibular arch during opening. The changes in width between the mandibular molar area in the mandible model with natural dentition and the mandible model treated with eight implants but not connected by superstructure were 0.212 mm and 0.249 mm, and the dimensional changes were decreased from the posterior to the anterior area, and these results conform to the clinical studies. We also found that, stress concentrated at the symphyseal area of superstructure during opening movement, and separating the superstructure at the symphyseal area will decrease the stress concentration of implant prostheses. In comparison with one-piece cross arch superstructure, two, three and four sections of the superstructure will decrease the stress of implant prostheses. During opening movement, stresses were concentrated at the implant-bone interface close to the implant neck. Especially the most distal implant in the mandible model treated with a one- piece cross arch superstructure, and implants connected with four-unit superstructure present stress concentration more equally.
The results indicated that the mandibular deformation and the stress concentration on implant-bone surface and prostheses are related to the different superstructure designs of implant supported fixed partial dentures. Therefore, we suggest that, the dentists should pay more attention to prostheses design on implant supported prostheses in edentulous mandible.
中文摘要 ………………………………………………………… . Ⅰ
英文摘要 …………………………………………………………. Ⅲ
目 錄 ………………………………………………………… . Ⅴ

第一章 緒論
第一節 研究動機與重要性 ………………………………. 1
第二節 研究目的 …………………………………………. 3
第三節 研究假設 …………………………………………. 4
第四節 名詞界定 …………………………………………. 4

第二章 文獻查證
第一節 下顎骨之形變 ……….…………………………… 7
第二節 下顎骨形變現象之研究 …………………………. 8
第三節 下顎骨形變之臨床考量 ………………………..... 10
第四節 下顎植體支持式固定義齒 ………………………. 11
第五節 下顎植體支持式固定義齒與下顎形變的關係 …. 12
第六節 下顎有限元素模擬分析 …………………………. 15
第七節 下顎植體支持式固定義齒的有限元素模擬分析 . 16

第三章 研究材料與方法
第一節 實驗設計 ………………………………………….. 18
第二節 有限元素模型 ………………………………….... 18

第四章 結果
第一節 下顎骨之開口運動 ...…………………………...… 27
第二節 顳顎關節的邊界條件對下顎骨內縮作用的影響… 27
第三節 自然齒列之下顎骨內縮情形 …………………….. 28

第四節 植體支持式固定義齒之下顎骨內縮情形………... 28
第五節 模型的應力分佈情形 ……………………………. 29

第五章 討論
第一節 下顎有限元素模型 ………………………………. 33
第二節 開口運動之模擬 …………………………………. 34
第三節 下顎的形變現象 …………………………………. 35
第四節 下顎植體支持式固定義齒的應力分布比較 ……. 38

第六章 結論與未來展望
第一節 結論 ………………………………………………. 41
第二節 應用與建議 ………………………………………. 42
第三節 未來展望 …………………………………………. 42

第七章 參考文獻 ………………………………………………. 44

附錄 ………………………………………………………………. 55
Al-Sukhun J, Kelleway J (2007). Biomechanics of the mandible: Part II.
Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants. Int J Oral Maxillofac Implants 22:455-466.

Apicella A, Masi E, Nicolais L, Zarone F, de Rosa N, Valletta G (1998).
A finite-element model study of occlusal schemes in full-arch
implant restoration . J Mater Sci Mater Med 9:191-196.

Aydinlik E, Akay HU (1980). Effect of a resilient layer in a removable partial denture base on stress distribution to the mandible. J Prosthet Dent 44:17-20.

Brånemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A (1977). Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Sur 16:1–132.
Burch JG, Borchers G (1970). Method for study of mandibular arch width
change. J Dent Res 49:463.

Burch JG (1972). Patterns of change in human mandibular arch width during jaw excursions. Arch Oral Biol 17:623-631.

Chen DC, Lai YL, Chi LY, Lee SY (2000). Contributing factors of
mandibular deformation during mouth opening. J Dent 28:583-588.

Cook SD, Klawitter JJ, Weinstein AM (1982). A model for the
implant-bone interface characteristics of porous dental implants. J Dent Res 61:1006-1009.

Du Brul EL, Sicher H (1954). The adaptive chin. Springfield, IL: Charles
C. Thomas Publisher.

De Marco T, Paine S (1974). Mandibular dimensional change. J Prosthet Dent 31:482-485.

De Oliveira RM, Emtiaz S (2000). Mandibular flexure and dental
implants: a case report. Implant Dent 9:90-95.

Farah JW, Craig RG, Meroueh KA (1989). Finite element analysis of three- and four-unit bridges. J Oral Rehabil 16:603-611.

Fischman B (1976). The influence of fixed splints on mandibular flexure.
J Prosthet Dent 35:643–647.

Fischman B (1990). The rotational aspect of mandibular flexure. J Prosthet Dent 64:483-485.

Garetto LP, Chen J, Parr JA, Roberts WE (1995). Remodeling dynamics of bone supporting rigidly fixed titanium implants: a histomorphometric comparison in four species including humans.
Implant Dent 4:235-243.

Gates GN, Nicholls JI (1981). Evaluation of mandibular arch width change. J Prosthet Dent 46:385-392.
Goodkind RJ, Heringlake CB (1973). Mandibular flexure in opening and
closing movements. J Prosthet Dent 30:134-138.

Hälg GA, Schmid J, Hämmerle CH (2008). Bone level changes at implants supporting crowns or fixed partial dentures with or without cantilevers. Clin Oral Implants Res 19:983-990.

Hylander WL, Bays R (1979). An in vivo strain-gauge analysis of the squamosal-dentary joint reaction force during mastication and incisal biting in Macaca mulatta and Macacafascicularis. Arch Oral Biol 24:689-697.

Hylander WL (1984). Stress and strain in the mandibular symphysis of
primates: a test of competing hypothesis. Am J Phys Anthropol 64: 1-64.

Knoell AC (1977). A mathematical model of an in vitro human mandible.
J Biomech 10:159-166.

Koolstra JH, van Eijden TM (1997). The jaw open-close movements
predicted by biomechanical modelling. J Biomech 30:943-950.

Korioth TW, Romilly DP, Hannam AG (1992). Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 88:69-96.

Korioth TW, Hannam AG (1994). Deformation of the human mandible during simulated tooth clenching. J Dent Res 73:56-66.

Landes CA, Sader R (2007). Sonographic evaluation of the ranges of condylar translation and of temporomandibular joint space as well as first comparison with symptomatic joints. J Craniomaxillofac Sur 35:374-381.

Lin SL, Lee SY, Lee LY, Chiu WT, Lin CT, Huang HM (2006). Vibrational analysis of mandible trauma: experimental and numerical approaches. Med Biol Eng Comput 44:785-792.

Maezawa N, Shiota M, Kasugai S, Wakabayashi N (2007). Three- dimensional stress analysis of tooth/lmplant-retained long-span fixed dentures. Int J Oral Maxillofac Implants 22:710-718.

Marcus SE, Drury TF, Brown LJ, Zion GR (1996). Tooth retention and
tooth loss in the permanent dentition of adults: United States, 1988-
1991. J Dent Res 75:684-695.

McCartney JW (1992). Cantilever rests: an alternative to the unsupported distal cantilever of osseointegrated implant-supported prostheses for the edentulous mandible. J Prosthet Dent 68:817-819.

McDowell JA, Regli CP (1961). A quantitative analysis of the decrease in width of the mandibular arch during forced movements of the mandible. J Dent Res 40:1183-1185.

Meijer HJ, Starmans FJ, Bosman F, Steen WH (1993). A comparison of
three finite element models of an edentulous mandible provided with implants. J Oral Rehabil 20:147-157.
Meijer HJ, Starmans FJ, Steen WH, Bosman F (1996). Loading conditions of endosseous implants in an edentulous human mandible: a three-dimensional, finite-element study. J Oral Rehabil 23:757-763.

Mericske-Stern R (1994). Overdentures with roots or implants for elderly
patients: a comparison. J Prosthet Dent 72:543–550.

Misch CE (2005). In: Dental implant prosthetics.USA: Mosby, Inc.

Misch CE (2008). In: Contemporary implant dentistry. 3rd Ed. USA: Mosby, Inc.

Miyamoto Y, Fujisawa K, Takechi M, Momota Y, Yuasa T, Tatehara S,
Nagayama M, Yamauchi E (2003). Effect of the additional installation of implants in the posterior region on the prognosis of treatment in the edentulous mandibular jaw. Clin Oral Implants Res 14:727-733.

Mori S, Burr DB (1993). Increased intracortical remodeling following fatigue damage. Bone 14:103-109.

Omar R, Wise MD (1981). Mandibular flexure associated with muscle force applied in the retruded axis position. J Oral Rehabil 8: 209-221.

Osborne J, Tomlin HR (1964). Medial convergence of the mandible. Br Dent J 117:112-114.

Ozçelik T, Ersoy AE (2007). An investigation of tooth/implant- supported fixed prosthesis designs with two different stress analysis methods: an in vitro study. J Prosthodont 16:107-116.

Paez CY, Barco T, Roushdy S, Andres C (2003). Split-frame implant prosthesis designed to compensate for mandibular flexure: A clinical report. J Prosthet Dent 89:341-343.

Pugh JW, Rose RM, Radin EL (1973). Elastic and viscoelastic properties
of trabecular bone: dependence on structure. J Biomech 6:475-485.
Redford M, Drury TF, Kingman A, Brown LF (1996). Denture use and
the technical quality of dental prostheses among persons 18–74 years of age: United States, 1988–1991. J Dent Res 75:714–725.

Reina JM, García-Aznar JM, Domínguez J, Doblaré M (2007). Numerical
estimation of bone density and elastic constants distribution in a human mandible. J Biomech 40:828-836.

Regli CP, Kelly EK (1967). The phenomenon of the decreased mandibular arch width in opening movements. J Prosthet Dent 17:49-53.

Rice JC, Cowin SC, Bowman JA (1988). On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21: 155-168.

Saab XE, Griggs JA, Powers JM, Engelmeier RL (2007). Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study. J Prosthet Dent 97:85-92.
Skalak R (1983). Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 49:843-848.

Shackleton JL, Carr L, Slabbert JC, Becker PJ (1994). Survival of fixed
implant-supported prostheses related to cantilever lengths. J Prosthet Den 71:23-26.

van Zyl PP, Grundling NL, Jooste CH, Terblanche E (1995). Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses. Int J Oral Maxillofac Implants 10:51-57.

Walton JN, MacEntee MI (1994). Problems with prostheses on implants:
a retrospective study. J Prosthet Dent 71:283-288.

Weijs WA, de Jongh HJ (1977). Strain in mandibular alveolar bone during mastication in the rabbit. Arch Oral Biol 22:667-675.

White SN, Caputo AA, Anderkvist T (1994). Effect of cantilever length on stress transfer by implant-supported prostheses. J Prosthet Dent 71:493-499.

Zarb GA, Schmitt A (1995). Implant prosthodontic treatment options for
the edentulous patient. J Oral Rehabil 22:661-671.

Zarone F, Apicella A, Nicolais L, Aversa R, Sorrentino R (2003).
Mandibular flexure and stress build-up in mandibular full-arch fixed
prostheses supported by osseointegrated implants. Clin Oral
Implants Res 14:103-114.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊