跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.96) 您好!臺灣時間:2026/01/23 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林微利
研究生(外文):Wei-Li Lin
論文名稱:乳酸菌菌體及不同細胞部位抗氧化能力之探討
論文名稱(外文):Antioxidative activities of cells and different cellular fractions of lactic acid bacteria
指導教授:林美吟林美吟引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:乳酸菌抗氧化活性氧化壓力介白素-8
外文關鍵詞:lactic acid bacteriaantioxidative abilityoxidative stressinterleukin-8
相關次數:
  • 被引用被引用:5
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究針對4株乳酸菌之不同部位進行體外抗氧化活性之分析,並以抗氧化活性較佳之部位探討是否具降低腸道上皮細胞氧化傷害之效果。使用之4株乳酸菌分別為Bifidobacterium longum B6、B. longum 15708、Lactobacillus bulgaricus 1006及Streptococcus thermophilus 3641,使用菌數為1010、109、108 CFU/mL,並且將其製備為活菌、熱致死菌、胞內液、熱處理胞內液及細胞壁等五個部份。抗氧化活性之評估包括總抗氧化力、清除DPPH自由基能力、清除過氧化氫能力、清除羥自由基能力及螯合亞鐵離子能力,並以細胞模式探討乳酸菌不同部分降低腸道上皮細胞 (Caco-2 cells) 氧化傷害之效果。在細胞模式中,將抗氧化活性較佳的部份與人類腸道上皮細胞進行共同培養,再以過氧化氫刺激細胞株分泌interleukin-8 (IL-8),以觀察樣品是否有保護腸道上皮細胞降低其氧化傷害。結果顯示以乳酸菌樣品進行抗氧化活性評估及降低過氧化氫誘導Caco-2細胞株分泌IL-8的試驗中,大部分的樣品皆因為菌數之增加而有較好的抗氧化能力。當菌數為1010 CFU/mL時,同一菌株下總抗氧化能力較好的部位為熱致死菌、胞内液及熱處理胞內液,其中以B. longum B6之熱處理胞內液之總抗氧化能力最高 (291.3μM);清除DPPH能力之結果中,4株菌中之活菌及熱致死菌清除DPPH之能力皆可達80%以上;清除過氧化氫能力以B. longum B6、B. longum 15708及S. thermophilus 3641之熱處理胞內液 (81.8、67.7及55.1%) 與L. bulgaricus 1006之熱致死菌 (88.9%) 較其它部位高;清除羥自由基能力則因菌株之不同,效果較好的部位亦有不同;螯合亞鐵離子能力較佳的部位為B. longum B6及L. bulgaricus 1006之熱致死菌 (88.1及92.5%) 與B. longum 15708及S. thermophilus 3641之熱處理胞內液 (72.3及93.5%)。於細胞試驗結果顯示B. longum B6、B. longum 15708、L. bulgaricus 1006及S. thermophilus 3641之熱致死菌、胞內液及熱處理胞內液與1 mM H2O2 處理組比較,大部分皆可降低Caco-2細胞株分泌IL-8的量 (P <0.05)。
Antioxidative ability of lactic acid bacteria including Bifidobacterium longum B6, B. longum 15708, Lactobacillus bulgaricus 1006 and Streptococcus thermophilus 3641 were examined in vitro. The fractions of lactic acid bacteria including intact cells, heat-killed cells, intracellular fractions, heat-treated intracellular fractions and cell wall were used for our study. The different bacterial concentration including 1010, 109, 108 CFU/mL were used. The best antioxidative ability of the fractions of lactic acid bacteria was further used for study on interleukin-8 (IL-8) secretion in H2O2-treated Caco-2 cells. The cell model can evaluate the protective effects of the fractions of lactic acid bacteria against H2O2-induced oxidative stress. Antioxidative abilities including TEAC, scavenging ability of DPPH, scavenging ability of H2O2, scavenging ability of OH• and chelating ability on ferrous ions were determined. The antioxidative ability of lactic acid bacteria depended on difference of strains and number of bacterium and expressed strain-dependent manners. Heat-treated intracellular fractions of B. longum B6 were highest TEAC (291.3μM). Scavenging ability of DPPH was more than 80% by all of these four lactic acid bacteria. Scavenging ability of H2O2 was higher than other fractions by heat-treated intracellular fractions of B. longum B6, B. longum 15708 and S. thermophilus 3641 (81.8, 67.7 and 55.1%), and heat-killed cells of L. bulgaricus 1006 (88.9%). Scavenging ability of OH• was different with difference of strains and fractions. Heat-killed cells of B. longum B6 and L. bulgaricus 1006 (88.1 and 92.5%), and heat-treated intracellular fractions of B. longum 15708 and S. thermophilus 3641 (72.3 and 93.5%) exhibited higher chelating ability on ferrous ions. Heat-killed cells, intracellular fractions and heat-treated intracellular fractions of B. longum B6, B. longum 15708, L. bulgaricus 1006 and S. thermophilus 3641 significantly decreased IL-8 secretion of Caco-2 cell.
目 次
中文摘要 i
Abstract ii
第一章 前言 1
第二章 文獻整理 3
一、乳酸菌 3
二、乳酸菌作為益生菌所具備之特性 3
三、乳酸菌的益生功能 3
(一) 維持腸道內菌相平衡 4
(二) 減緩乳糖不耐症 4
(三) 降低膽固醇 4
(四) 預防癌症 5
(五) 調節免疫系統 5
(六) 降低血壓 6
四、活性氧與氧化傷害 6
(一) 自由基與活性氧 6
(二) 活性氧對生物體的傷害 6
(三) 氧化壓力 7
(四) 抗氧化防禦系統 8
五、發炎反應與趨化激素 9
六、乳酸菌的抗氧化能力 10
七、實驗目的 10
第三章 材料與方法 18
一、 實驗材料 18
(一) 試驗菌株 18
(二) 乳酸菌培養基 18
(三) 細胞株 18
(四) 細胞株培養基 18
(五) 試藥 18
(六) 培養基及緩衝液配方 20
(七) 商業套組 21
(八) 試驗儀器 21
二、 實驗方法 22
(一) 菌株活化與保存 22
(二) 乳酸菌菌數測定 22
(三) 乳酸菌之樣品製備 22
(四) 乳酸菌之抗氧化活性分析 24
1. 總抗氧化力測定 24
2. 清除DPPH自由基能力測定 24
3. 清除過氧化氫能力測定 25
4. 清除羥自由基能力測定 26
5. 螯合亞鐵離子能力測定 27
(五) 細胞培養 27
1. 細胞解凍與培養 27
2. 細胞繼代培養 27
3. 細胞保存 28
4. 細胞計數 28
(六)細胞存活率分析 28
(七)過氧化氫誘導 IL-8 分泌試驗 29
(八)IL-8 之測試 29
(九) 蛋白質濃度測定 30
(十) 蛋白質電泳 31
(十一) 統計分析 31
第四章 結果與討論 32
一、乳酸菌之抗氧化活性分析 32
(一) 總抗氧化力 32
(二) 清除 DPPH 自由基能力 33
(三) 清除過氧化氫能力 34
(四) 清除羥自由基能力 35
(五) 螯合亞鐵離子能力 36
二、細胞存活率分析 37
三、乳酸菌對過氧化氫誘導 Caco-2 分泌 IL-8 之影響 38
四、乳酸菌胞內液及熱處理胞內液之蛋白質濃度測定及蛋白質電泳 40
第五章 結論 76
第六章 參考文獻 77
附錄 88

表目錄
表一、評估益生菌應具備的特性 12
表二、常見的自由基 13
表3-1、B. longum B6之總抗氧化力 42
表3-2、B. longum 15708之總抗氧化力 43
表3-3、L. bulgaricus 1006之總抗氧化力 44
表3-4、S. thermophilus 3641之總抗氧化力 45
表4-1、B. longum B6對DPPH自由基之清除能力 46
表4-2、B. longum 15708對DPPH自由基之清除能力 47
表4-3、L. bulgaricus 1006對DPPH自由基之清除能力 48
表4-4、S. thermophilus 3641對DPPH自由基之清除能力 49
表5-1、B. longum B6清除過氧化氫之能力 50
表5-2、B. longum 15708清除過氧化氫之能力 51
表5-3、L. bulgaricus 1006清除過氧化氫之能力 52
表5-4、S. thermophilus 3641清除過氧化氫之能力 53
表6-1、B. longum B6清除羥自由基之能力 54
表6-2、B. longum 15708清除羥自由基之能力 55
表6-3、L. bulgaricus 1006清除羥自由基之能力 56
表6-4、S. thermophilus 3641清除羥自由基之能力 57
表7-1、B. longum B6對亞鐵離子螯合能力 58
表7-2、B. longum 15708螯合能力 59
表7-3、L. bulgaricus 1006對亞鐵離子螯合能力 60
表7-4、S. thermophilus 3641對亞鐵離子螯合能力 61
表八、乳酸菌胞內液及熱處理胞內液之蛋白質濃度 62

圖目錄
圖一、人類腸道菌相的分布 14
圖二、三重態氧形成各種反應性氧分子之過程 15
圖三、體內造成氧化壓力的原因 16
圗四、趨化激素之生物功能 17
圖5-1、H2O2及GSH不同部位對Caco-2存活率之影響 63
圖5-2、B. longum B6不同部位對Caco-2存活率之影響 64
圖5-3、B. longum 15708不同部位對Caco-2存活率之影響 65
圖5-4、L. bulgaricus 1006不同部位對Caco-2存活率之影響 66
圖5-5、S. thermophilus 3641不同部位對Caco-2存活率之影響 67
圖6-1、B. longum B6對過氧化氫誘導Caco-2 細胞株分泌IL-8細胞激素之影響 68
圖6-2、B. longum 15708對過氧化氫誘導Caco-2 細胞株分泌IL-8細胞激素之影響 69
圖6-3、L. bulgaricus 1006對過氧化氫誘導Caco-2 細胞株分泌IL-8細胞激素之影響 70
圖6-4、S. thermophilus 3641對過氧化氫誘導Caco-2 細胞株分泌IL-8細胞激素之影響 71
圖7-1、100℃加熱處理對B. longum B6胞內液 (2×109 CFU/mL) 蛋白質濃度之影響 72
圖7-2、100℃加熱處理對B. longum 15708胞內液 (2×109 CFU/mL) 蛋白質濃度之影響 73
圖7-3、100℃加熱處理對L. bulgaricus 1006胞內液 (2×109 CFU/mL) 蛋白質濃度之影響 74
圖7-4、100℃加熱處理對S. thermophilus 3641胞內液 (2×109 CFU/mL) 蛋白質濃度之影響 75
ㄧ、圖書
張文正、鐘景光、方世華、李俊峰、林世芬、周豐智、邱麗蓉、陳怡芳及鄧景文。1997。Kuby 免疫學。合記圖書出版社。台北。台灣。
趙克然、楊毅軍及曹道俊。2003。氧自由基與臨床。合記圖書出版社。台北。台灣。
鍾楊聰、方繼、許元勳、陳啟楨、林建谷、林春福及巢佳莉。2002。基礎微生物。偉明圖書有限公司。台北。台灣。

二、期刊論文
王啟賢。2002。益生菌L. GG吸附在Caco-2細胞上對抗生素及生物黃酮通透的影響。大同大學生物工程研究所碩士論文。台北。台灣。
張芬娟。1999。乳酸菌菌體及胞內物抗氧化活性之探討。國立中興大學食品科學系碩士論文。台中。台灣。
蔡英傑。1998年。乳酸菌與益生菌。生物產業。9: 98-104。
廖郁婷。2004。乳酸菌之免疫調節作用。國立中興大學食品科學系碩士論文。台中。台灣。
廖啟成。1994。細說乳酸菌。健康世界。8: 52-61。
顏全良。1997。乳酸菌抗氧化能力之探討及對脂質過氧化之抑制。國立中興大學食品科學系碩士論文。台中。台灣。

三、Books
Goldsby, R. A., Kindt, T. J., and Osborne, B. A. 2000. Kuby immunology. 5th ed. W. H. Freeman. New York. USA.
Halliwell, B. and Gutteridge, J. M. 1999. Free radicals in biology and medicine. 3rd ed. Oxford University Press Inc. New York. USA.
Labuza, T. P., Reineccius, G. A., Monnier, V. M., O’Brien, J. and Baynes, J. W. 1994. Maillard reactions in chemistry, food, and health. Royal Society of Chemistry. England.
Seltmann, G. and Holst, O. 2001. The bacterial cell wall. Springer. New York. USA.
Tortora, G. J., Funke, B. R. and Case, C. L. 1992. Microbiology: an introduction. 4th ed. Benjamin/Cummings. California. USA.

四、Journal Articles
Amrouche, T., Boutin, Y., Prioult, G. and Fliss, I. 2006. Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int. Dairy J. 16: 70-80.
Arnao, M. B., Cano, A., Hernández-Ruiz, J., García-Cánovas, F. and Acosta M. 1996. Inhibition by L-ascorbic acid and other antioxidants of the 2,2''-azino-bis(3-ethylbenzthiazoline-6- sulfonic Acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Anal. Biochem. 236: 255-261.
Bay, B. H., Lee, Y. K., Tan, B. K. and Ling, E.A. 1999. Lipid peroxidative stress and antioxidative enzymes in brains of milk-supplemented rats. Neurosci Lett. 277: 127-130.
Carr, F. J., Chill, D. and Maida, N. 2002. The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28: 281-370.
Choi, S. S., Kim, Y., Han, K. S., You, S., Oh, S. and Kim, S. H. 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42: 452-458.
Delcour, J., Ferain, T., Deghorain, M., Palumbo, E. and Hols, P. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek. 76: 159-184.
Dinis, T. C., Maderia, V. M. and Almeida, L. M. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 15: 161-169.
Dittrich, R., El-Massry, F., Kunz, K., Rinaldi, F., Peich, C. C., Beckmann, M. W. and Pischetsrieder, M. 2003. Maillard reaction products inhibit oxidation of human low-density lipoproteins in vitro. J. Agric. Food Chem. 51: 3900-3904.
Draper, H. H., Agarwal, S., Nelson, D. E., Wee, J. J., Ghoshal, A. K. and Farber, E. 1995. Effects of peroxidative stress and age on the concentration of a deoxyguanosine-malonialdehyde adduct in rat DNA. Lipids. 30: 959-961.
Duh, P. D., Yen, G. C., Yen, W. J., Wang, B. S. and Chang, L. W. 2004. Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. J. Agric. Food Chem. 52: 8169-8176.
Evans, M. E., Jones, D. P. and Ziegler, T. R. 2003. Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. J. Nutr. 133: 3065-3071.
Feng, F. and Mine, Y. 2006. Phosvitin phosphopeptides increase iron uptake in a Caco-2 cell monolayer model. Int. J. Food Sci. Technol. 41: 455-458.
Fiorillo, C., Oliviero, C., Rizzuti, G., Nediani, C., Pacini, A. and Nassi, P. 1998. Oxidative stress and antioxidative defenses in renal patients receiving regular haemodialysis. Clin. Chem. Lab. Med. 36: 149-153.
Fogliano, V., Verde, V., Randazzo, G. and Ritieni, A. 1999. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 47: 1035-1040.
Friedman, M. 1996. Food browning and its prevention: an overview. J. Agric. Food Chem. 44: 631-653.
Friedman, M. 2005. Biological effects of Maillard browning products that may affect acrylamide safety in food: biological effects of Maillard products. Adv. Exp. Med. Biol. 561: 135-156.
Goldin, B. R. and Gorbach, S. L. 1984. The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39: 756-761.
Gopal, P. K. and Reilly, K. I. 1995. Molecular architecture of the lactococcal cell surface as it relates to important industrial properties. Int. Dairy J. 5: 1095-1111.
Gutteridge, J. M. 1993. Free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. Comm. 19: 141-145.
Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutr. Rev. 52: 253-265.
Halliwell, B., Gutteridge, J. M. and Aruoma, O. I. 1987. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165: 215-219.
Harris, M. L., Schiller, H. J., Reilly, P. M., Donowitz, M., Grisham, M. B. and Bulkley, G. B. 1992. Free radicals and other reactive oxygen metabolites in inflammatory bowel disease: cause, consequence or epiphenomenon? Pharmacol. Ther. 53: 375-408.
Hayase, F., Hirashima, S., Okamoto, G. and Kato, H. 1989. Scavenging of active oxygens by melanoidines. Agric. Biol. Chem. 53: 3383-3385.
Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U. and Huis, in''t Veld J. H. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85-101.
Hou, R. C., Lin, M. Y., Wang, M. M. and Tzen, J. T. 2003. Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J. Dairy Sci. 86: 424-428.
Ikawa, M. and Snell, E. E. 1960. Cell wall composition of lactic acid bacteria. J. Biol. Chem. 235: 1376-1382.
Ito, K., Hanazawa, T., Tomita, K., Barnes, P. J. and Adcock, I. M. 2004. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem. Biophys. Res. Commun. 315: 240-245.
Ito, M., Ohishi, K., Yoshida, Y., Yokoi, W. and Sawada, H. 2003. Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice. J. Agric. Food Chem. 51: 4456-4460.
Ito, M., Sawada, H., Ohishi, K., Yoshida, Y., Yokoi, W., Watanabe, T. and Yokokura, T. 2001. Suppressive effects of bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice. J. Dairy Sci. 84: 1583-1589.
Jiang, B. and Mine, Y. 2001. Phosphopeptides derived from hen egg yolk phosvitin: effect of molecular size on the calcium-binding properties. Biosci. Biotechnol. Biochem. 65: 1187-1190.
Kaizu, H., Sasaki, M., Nakajima, H. and Suzuki, Y. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in Vitamin E. J. Dairy Sci. 76: 2493-2499.
Katayama, S., Xu, X., Fan, M. Z. and Mine, Y. 2006. Antioxidative stress activity of oligophosphopeptides derived from hen egg yolk phosvitin in Caco-2 cells. J. Agric. Food Chem. 54: 773-778.
Kato, I., Endo, K. and Yokokura, T. 1994. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immunopharmacol. 16: 29-36.
Klaver, F. A. and van der Meer, R. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59: 1120-1124.
Konishi, Y. and Shimizu, M. 2003. Transepithelial transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 67: 856-862.
Kot, E. and Bezkorovainy, A. 1998. Effect of hydrogen peroxide on the physiology of Bifidobacterium thermophilum. J. Agric. Food Chem. 46: 2921-2925.
Kot, E. and Bezkorovainy, A. 1999. Binding of ferric iron to the cell walls and membranes of Bifidobacterium thermophilum: effect of free radicals. J. Agric. Food Chem. 47: 4606-4610.
Kot, E., Furmanov, S. and Bezkorovainy, A. 1997. Binding of Fe(OH)3 to Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus acidophilus: apparent role of hydrogen peroxide and free radicals. J. Agric. Food Chem. 45:690-696.
Kullisaar, T., Songisepp E., Mikelsaar M, Zilmer K, Vihalemm T. and Zilmer M. 2003. Antioxidative probiotic fermented goats'' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 90: 449-456.
Labaj, J., Slamenova, D. and Kosikova, B. 2003. Reduction of genotoxic effects of the carcinogen N-methyl-N''-nitro-N- nitrosoguanidine by dietary lignin in mammalian cells cultured in vitro. Nutr. Cancer. 47: 95-103.
Lin, C. Y., Tsai, Z. Y., Cheng, I. C. and Lin, S. H. 2005. Effects of fermented soy milk on the liver lipids under oxidative stress. World J. Gastroenterol. 11: 7355-7358.
Lin, M. Y. and Chang, F. J. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45: 1617- 1622.
Lin, M. Y. and Yen, C. L. 1999. Antioxidative activity of lactic acid bacteria. J. Agric. Food Chem. 47: 1460-1466.
Liu, J. R., Chen, M. J. and Lin, C. W. 2005. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 53: 2467-2474.
Malin, M., Suomalainen, H., Saxelin, M. and Isolauri, E. 1996. Promotion of IgA immune response in patients with Crohn’s disease by oral bacteriotherapy with Lactobacillus GG. Ann. Nutr. Metab. 40: 137-145.
Manna, C., Galletti, P., Cucciolla, V., Moltedo, O., Leone, A. and Zappia, V. 1997. The protective effect of the olive oil polyphenol (3,4-dihydroxyphenyl)-ethanol counteracts reactive oxygen metabolite-induced cytotoxicity in Caco-2 Cells. J. Nutr. 127: 286-292.
Matsuguchi, T., Takagi, A., Matsuzaki, T., Nagaoka, M., Ishikawa, K., Yokokura, T. and Yoshikai, Y. 2003. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10: 259-266.
Mendis, E., Rajapakse, N., Kim, S. K. 2005. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 53: 581-587.
Mitsuyama, K., Toyonaga, A., Sasaki, E., Watanabe, K., Tateishi, H., Nishiyama, T., Saiki, T., Ikeda, H., Tsuruta, O. and Tanikawa, K. 1994. IL-8 as an important chemoattractant for neutrophils in ulcerative colitis and Crohn''s disease. Clin. Exp. Immunol. 96: 432-436.
Naidu, A. S., Bidlack, W. R. and Clemens, R. A. 1999. Probiotic spectra of lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 39: 13-126.
Nakamura, Y., Yamamoto, N., Sakai, K. and Takano, T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257.
O’Sullivan, M. A. and O’Morain, C. A. 2000. Bacterial supplementation in the irritable bowel syndrome. A randomised double-blind placebo-controlled crossover study. Dig. Liver Dis. 32: 294-301.
Oksanen, P. J., Salminen, S., Saxelin, M., Hamalainen, P., Ihantola-Vormisto, A., Muurasniemi-Isoviita, L., Nikkari, S., Oksanen, T., Porsti, I. and Salminen, E. 1999. Prevention of travellers’ diarrhoea by Lactobacillus GG. Ann. Med. 22: 53-56.
Orrhage, K., Sillerstrom, E., Gustafsson, J. A., Nord, C. E. and Rafter, J. 1994. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. 311: 239-248.
Peterson, M. D. and Mooseker, M. S. 1992. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J. Cell Sci. 102: 581-600.
Rafter, J. 2002. Lactic acid bacteria and cancer: mechanistic perspective. Br. J. Nutr. 88: S89-94.
Ramarathnam, N., Ochi, H., Osawa, T. and Kawakishi, S. 1995. The contribution of plant food antioxidants to human health. Trends Food Sci. Technol. 6: 75-82.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237.
Rinkus, S. J. and Taylor, R. T. 1990. Analysis of hydrogen peroxide in freshly prepared coffees. Food Chem. Toxicol. 28: 323-331.
Rogler, G. and Andus, T. 1998. Cytokines in inflammatory bowel disease. World J. Surg. 22: 382-389.
Rossi, D. and Zlotnik, A. 2000. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18: 217-242.
Saarela, M., Lahteenmaki, L., Crittenden, R., Salminen, S., Mattila-Sandholm, T. 2002. Gut bacteria and health foods-the European perspective. Int. J. Food Microbiol. 78: 99-117.
Saide, J. A. and Gilliland, S. E. 2005. Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity. J. Dairy Sci. 88: 1352-1357.
Saito, K., Jin, D. H., Ogawa, T., Muramoto, K., Hatakeyama, E., Yasuhara, T. and Nokihara, K. 2003. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51: 3668-3674.
Saul, R. L. and Ames, B. N. 1986. Background levels of DNA damage in the population. Basic Life Sci. 38: 529-535.
Schaefer, S., Baum, M., Eisenbrand, G., Dietrich, H., Will, F. and Janzowski, C. 2006. Polyphenolic apple juice extracts and their major constituents reduce oxidative damage in human colon cell lines. Mol. Nutr. Food Res. 50: 24-33.
Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-poly- acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379.
Scheinbach, S. 1998. Probiotics: functionality and commercial status. Biotechnol. Adv. 16: 581-608.
Sekine, K., Toida, T., Saito, M., Kuboyama, M., Kawashima, T. and Hashimoto, Y. 1985. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Res. 45: 1300-1307.
Shanahan, F. 2004. Probiotics in inflammatory bowel disease- therapeutic rationale and role. Adv. Drug Deliv. Rev. 56: 809-818.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamurat T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Son, D. O., Satsu, H., Kiso, Y. and Shimizu, M. 2004. Characterization of carnosine uptake and its physiological function in human intestinal epithelial Caco-2 cells. Biofactors. 21: 395-398.
Songisepp, E., Kals, J., Kullisaar, T., Mandar, R., Hutt, P., Zilmer, M. and Mikelsaar, M. 2005. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr. J. 4: 4-22.
Sreekumar, O. and Hosono, A. 1998. The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat. Res. 421: 65-72.
Steller, H. 1995. Mechanisms and genes of cellular suicide. Science. 267: 1445-1449.
Tannock, G. W. 1997. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 15: 270-274.
Terahara, M., Kurama, S. and Takemoto, N. 2001. Prevention by lactic acid bacteria of the oxidation of human LDL. Biosci. Biotechnol. Biochem. 65: 1864-1868.
Van den Berg, R., Haenen, G., van den Berg, H. and Bast, A. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511-517.
Venturi, A., Gionchetti, P., Rizzello, F., Johansson, R., Zucconi, E., Brigidi, P., Matteuzzi, D. and Campieri, M. 1999. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment. Pharmacol. Ther. 13: 1103-1108.
Wang, K. Y., Li, S. N., Liu, C. S., Perng, D. S., Su, Y. C., Wu, D. C., Jan, C. M., Lai, C. H., Wang, T. N. and Wang, W. M. 2004. Effects of ingesting Lactobacillus- and Bifidobacterium- containing yogurt in subjects with colonized Helicobacter pylori. Am. J. Clin. Nutr. 80: 737-741.
Wieslander, E., Engman, L., Svensjo, E., Erlansson, M., Johansson, U., Linden, M., Andersson, C. M. and Brattsand, R. 1998. Antioxidative properties of organotellurium compounds in cell systems. Biochem Pharmacol. 55: 573-584.
Wolff, S. P. and Dean, R. T. 1987. Glucose autooxidation and protein modification. Biochem. J. 245: 243-250.
Yamaguchi, T., Takamura, H., Matoba, T. and Terao, J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 62: 1201-1204.
Yamamoto, K., Kushima, R., Kisaki, O., Fujiyama, Y. and Okabe, H. 2003. Combined effect of hydrogen peroxide induced oxidative stress and IL-1α on IL-8 production in Caco-2 cells (a human colon carcinoma cell line) and normal intestinal epithelial cells. Inflammation. 27: 123-128.
Yoshimura, Y., Iijima, T., Watanabe, T., and Nakazawa, H. 1997. Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem. 45:4106-4109.
Zhang, X. B. and Ohta, Y. 1993. Microorganisms in the gastrointestinal tract of the rat prevent absorption of the mutagen-carcinogen 3-amino-1,4-dimethyl-5H-pyrido (4,3-b) indole. Can. J. Microbiol. 39: 841-845.
Zodl, B., Sargazi, M., Zeiner, M., Roberts, N. B,, Steffan, I., Marktl, W. and Ekmekcioglu, C. 2004. Toxicological effects of iron on intestinal cells. Cell Biochem. Funct. 22: 143-147.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top