跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉仁豪
研究生(外文):Ren Hau Yeh
論文名稱:卜作嵐材料與極化電場對0-3型水泥壓電複合材料的影響
論文名稱(外文):Effect of Pozzolanic Materials and Poling Field on 0-3 Type Cement-Based Piezoelectric Composites
指導教授:潘煌鍟潘煌鍟引用關係
指導教授(外文):H. H. Pan
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:106
中文關鍵詞:壓電性質卜作嵐材料極化電場水泥鋯鈦酸鉛
外文關鍵詞:piezoelectric propertiespozzolanic materialspoling fieldcementPZT
相關次數:
  • 被引用被引用:12
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在不同極化電場下含卜作嵐材料之0-3型鋯鈦酸鉛(PZT)水泥壓電複合材料的顯微結構、壓電性質與老化性質,其中PZT總體積占50%,膠結材有純水泥或含取代水泥體積20%的卜作嵐材料,卜作嵐材料包括矽灰、水淬爐石粉和F級飛灰三種。以80MPa壓製壓電複合材料試體,於90℃水槽內養護7天,在溫度150℃極化45分鐘,極化電場有0.5kV/mm、1kV/mm 及1.5kV/mm。
實驗結果顯示,試體極化後1天至10天內的壓電性質變化較大,10天至14天變化較小,在14天後的壓電性質會穩定下來。添加飛灰試體的極化電壓增幅速率最快,添加爐石粉試體次之,而添加矽灰試體最慢,因此矽灰試體的電壓增幅時間必須拉長。然而,矽灰水泥壓電複合材料因具有較高的介電性與緻密性,在1.5kV/mm極化電場時的壓電應變常數d33值最高可達34.43pC/N,爐石水泥壓電複合材料次之,兩者都可以提升壓電應變常數;但添加飛灰之水泥壓電複合材料並無法提高水泥試體的壓電應變常數。因添加飛灰的電容值會降低,使水泥壓電複合材料的壓電電壓常數上升,因此添加飛灰的水泥壓電複合材料可以提高壓電電壓常數,壓電電壓常數g33值可達23.7mVm/N,比純PZT壓電陶瓷的壓電電壓常數還高。加入卜作嵐材料後,水泥壓電複合材料的機械能與電能的轉換能力會稍微降低。不論有無添加卜作嵐材料,提高極化電場都會增加水泥壓電複合材料的壓電應變常d33值與壓電電壓常數g33值,但在低極化電場如0.5kV/mm及1kV/mm時,添加矽灰之水泥壓電試體的阻抗頻譜反應不明顯,導致極化不完全。
In this study, the microstructure and piezoelectric properties of 0-3 type PZT cement-based piezoelectric composite containing pozzolanic materials under different poling fields are investigated, where PZT is the inclusion with 50% volume fraction and the binders include 50% cement or a mixture of 40% cement and 10% pozzolanic materials in volume. Three pozzolanic materials were used containing silica fume, blast furnace slag and F grade fly ash. The composite was applied to three poling fields including 0.5kV/mm, 1kV/mm and 1.5kV/mm, respectively. The 0-3 type cement-based piezoelectric composites were produced by applying 80MPa to form disk samples with 15mm in diameter and 2mm in thickness. The specimens were put in 90℃ water for 7 days. After curing, the samples were poled at 150℃ for 45 minutes.
Experimental results showed that, after the polarization, piezoelectric properties of the specimen changed obviously from 1 day to 10 days, and then the change became small in 10 to 14 days, finally piezoelectric properties were stable after 14 days. Within the polarization, the composites containing fly ash show the shortest increasing rate of voltage, blast furnace slag specimen is the second, and silica fume specimen has the longest voltage increasing rate to be poled. However, the silica fume specimen owns high dielectric properties and good dense structures, and it can be help to enhance piezoelectric strain constant d33 values up to 34.43pC/N. The blast furnace slag cement-based piezoelectric composites also can increase the piezoelectric strain constant, but no increase for fly ash cement-based piezoelectric composites compared with PZT/cement composites without pozzolanic materials. The value of piezoelectric voltage constant g33 for fly ash cement-based piezoelectric composites is 23.7mVm/N, higher than PZT piezoelectric ceramics. The electro-mechanical coupling factor reduces if PZT/cement composites containing pozzolanic materials. Piezoelectric properties increase with increasing poling fields for all specimens. For silica fume cement-based piezoelectric composites undergone lower voltages such as 0.5kV/mm and 1kV/mm, impendence-frequency spectrums showed less reactions, that is, the polarization is incomplete.
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI
第一章、緒 論 1
1.1、研究動機 1
1.2、研究目的 2
1.3、研究方法 2
1.4、研究流程 3
第二章、文獻回顧 4
2.1、水泥及卜作嵐材料 4
2.1.1、水泥 5
2.1.2、卜作嵐材料 5
2.1.3、水化與卜作嵐反應 7
2.2、壓電材料 8
2.2.1、壓電材料特性 10
2.2.2、壓電材料極化 10
2.2.3、壓電特性參數 12
2.3、水泥壓電複合材料 12
2.3.1、2-2型水泥壓電複合材料 13
2.3.2、1-3型水泥壓電複合材料 22
2.3.3、0-3型水泥壓電複合材料 28
第三章、實驗計畫 43
3.1、實驗目的 43
3.2、實驗材料 43
3.3、實驗變數 47
3.3.1、固定條件 47
3.3.2、變數條件 48
3.4、儀器設備 48
3.5、試體製作與養護 55
3.6、極化技術 59
3.7、微觀結構 61
3.8、壓電性質量測與計算 62
第四章、結果與討論 65
4.1、齡期及老化 65
4.2、卜作嵐材料的影響 72
4.3、極化電場影響 76
4.4、顯微結構分析 84
第五章、結論與建議 100
5.1、結論 100
5.2、建議 101
參考文獻 102
口試照片 105
作者簡歷 106
[1]黃兆龍,2007,卜作嵐混凝土使用手冊,初版,科技圖書股份有限公司,台北市。
[2]汪建民,1994,陶瓷技術手冊,初版,中華民國產業科技發展協進會,台北。
[3]Dong, B. and Li, Z., 2005, “Cement-based piezoelectric ceramic smart composites”, Composites Science and Technology, Vol.65, pp.1363-1371.
[4]Dong, B., Xing, F. and Li, Z., 2007, “The study of poling behavior and modeling of cement-based piezoelectric ceramic composites”, Materials Science and Engineering A, Vol.456, pp.317-322.
[5]Huang, S., Chang, J., Lu, L., Liu, F., Ye, Z. and Cheng, X., 2006, “Preparation and polarization of 0-3 cement based piezoelectric composites”, Materials Research Bulletin, Vol.41, pp.291-297.
[6]Chaipanich, A., Jaitanong, N. and Tunkasiri, T., 2007, “Fabrication and properties of PZT–ordinary Portland cement composites”, Materials Letters, Vol. 61, pp.5206-5208.
[7]Chaipanich, A., 2007, “Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites”, Current Applied Physics, Vol.7, pp.574-577.
[8]Chaipanich, A., 2007, “Dielectric and piezoelectric properties of PZT-silica fume cement composites”, Current Applied Physics, Vol.7, pp.532-536.
[9]Cheng, X., Huang, S., Chang, J., Xu, R., Liu, F. and Lu, L., 2005, “Piezoelectric and dielectric properties of piezoelectric ceramic-sulphoaluminate cement composites”, Journal of the European Ceramic Society, Vol.25, pp.3223-3228.
[10]Huang, S., Ye, Z., Hu, Y., Chang, J. , Lu, L. and Cheng, X., 2007, “Effect of forming pressures on electric properties of piezoelectric ceramic/sulphoaluminate cement composites”, Composites Science and Technology, Vol.67, pp.135-139.
[11]Li, Z., Dong, B. and Zhang, D., 2005, “Influence of polarization on properties of 0-3 cement-based PZT composites”, Cement & Concrete Composites, Vol.27, pp.27-32.
[12]Chaipanich, A., 2007, “Dielectric and piezoelectric properties of PZT-cement composites”, Current Applied Physics, Vol.7, pp.537-539.
[13]Li, Z., Gong, H. and Zhang, Y., 2009, “Fabrication and piezoelectricity of 0-3 cement based composite with nano-PZT powder”, Current Applied Physics, Vol.9, pp.588-591.
[14]龔紅宇、張玉軍、車松蔚、趙玉軍,2011,“粒度對水泥基壓電複合材料的壓電性能和力學性能的影響”,人工晶體學報,第40卷第1期,pp.213-217。
[15]Chaipanich, A. and Jaitanong, N., 2008, “Effect of poling time on piezoelectric properties of 0-3 PZT-Portland cement composites”, Ferroelectric Letters, Vol.35, pp.73-78.
[16]李雪、黃世峰、劉福田、徐東宇,2008,“碳黑改性0-3型水泥基壓電複合材料的性能”,建築材料學報,第11卷第3期,pp.271-275。
[17]Huang, S., Li, X., Liu, F., Chang, J., Xu, D. and Cheng, X., 2009, “Effect of carbon black on properties of 0-3 piezoelectric ceramic/cement composites”, Current Applied Physics, Vol.9, pp.1191-1194.
[18]龔紅宇、全靜、張玉軍、畢見強、車松蔚,2010,“CNTs/納微米PZT/水泥壓電複合材料的研究”,人工晶體學報,第39卷第3期,pp.660-664。
[19]Gong, H., Zhang, Y., Quan, J. and Che, S., 2011, “Preparation and properties of cement based piezoelectric composites modified by CNTs”, Current Applied Physics, Vol.11, pp.653-656.
[20]潘煌鍟、陳彥年,2011,“0-3型PZT水泥基壓電複合材料製程與極化技術”,中國土木水利工程學刊,第23卷第1期,pp.1-10。
[21]沈永年、王和源、林仁益、郭文田,2003,混凝土技術,二版,全華科技圖書股份有限公司,台北。
[22]黃兆龍,2002,混凝土性質與行為,三版,詹氏書局,台北。
[23]行政院公共工程委員會,1999,公共工程飛灰混凝土使用手冊,行政院公共工程委員會。
[24]行政院公共工程委員會,2001,公共工程高爐石混凝土使用手冊,行政院公共工程委員會。
[25]林家宏,2004,“飛灰調質熔渣成份對卜作嵐反應特性之影響”,國立中央大學,碩士論文。
[26]周卓明,2003,壓電力學,初版,全華科技圖書股份有限公司,台北。
[27]吳朗,1994,電子陶瓷-壓電,全欣資訊圖書股份有限公司,台北。
[28]Li, Z., Zhang, D. and Wu, K., 2001, “Cement matrix 2-2 piezoelectric composite - Part1. Sensory effect”, Materials and Structures, Vol.34, pp.506-512.
[29]Shen, B., Yang, X. and Li, Z., 2006, “A cement-based piezoelectric sensor for civil engineering structure”, Materials and Structures, Vol.39, pp.37-42.
[30]Huang, S., Xu, D., Chang, J., Ye, Z. and Cheng, X., 2007, “Influence of water-cement ratio on the properties of 2-2 cement based piezoelectric composite”, Materials Letters, Vol.61, pp.5217-5219.
[31]Xu, D., Cheng, X., Huang, S. and Jiang, M., 2009, “Electromechanical properties of 2-2 cement based piezoelectric composite”, Current Applied Physics, Vol.9, pp.816-819.
[32]Li, Z. X., ASCE, M., Yang, X. M. and Li, Z., 2006, “Application of cement-based piezoelectric sensors for monitoring traffic flows”, Journal of Transportation Engineering, pp.565-573.
[33]Chaipanich, A., Potong, R., Rianyoi, R., Jareansuk, L., Jaitanong N. and Yimnirun, R., 2011, “Dielectric and ferroelectric hysteresis properties of 1-3 lead magnesium niobate-lead titanate ceramic/Portland cement composites”, Ceramics International.
[34]Cheng, X., Xu, D., Lu, L., Huang, S. and Jiang, M., 2010, “Performance investigation of 1-3 piezoelectric ceramic-cement composite”, Materials Chemistry and Physics, Vol.121, pp.63-69.
[35]Rianyoi, R., Potong, R., Jaitanong, N., Yimnirun, R., Ngamjarurojana, A. and Chaipanich, A., 2011, “Dielectric and ferroelectric properties of 1-3 barium titanatee-Portland cement composites”, Current Applied Physics.
[36]胡雅莉、黃世峰、徐東宇、程新,2006,“陶瓷體積分數對水泥基壓電複合材料性能的影響”,濟南大學學報,第20卷第2期,pp.105-107。
[37]黃世峰、郭麗麗、劉亞妹、徐東宇、程新,2009,“1-3型聚合物改性水泥基壓電複合材料的製備及其性能”,複合材料學報,第26卷第6期,pp.133-137。
[38]黃世峰、常鈞、秦磊、楊曉明、李宗津、程新,2008,“1-3型水泥基壓電複合材料傳感器的性能”,複合材料學報,第25卷第1期,pp.112-118。
[39]李貴佳、全靜、龔紅宇、孫良成,2009,“水泥基壓電複合材料的研究進展”,材料導報,第23卷第12期,pp.52-55。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top