|
[1] Manz, A., Graber, N. and Widmer, H. M., “Miniaturized Total Chemical Analysis System: A Novel Concept for Chemical Sensing, Sens. Actuator B-Chem., 1, 244 (1990). [2] Gravesen, P., Branebjerg, O. J. and Jensen, S., “Microfluidics – A Review, J. Micromech. Microeng., 3, 168 (1993). [3] Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Systems, Microprocesses Nanotechnol., 99, 72 (1999). [4] Harrison, D. J. and Berg, A., Micro Total Analysis Systems 98, Kluwer Academic Publishers, Netherlands (1998). [5] Ben, Y. and Chang, H. C., “Nonlinear Smoluchowski Slip Velocity and Micro-vortex Generation, J. Fluid Mech., 461, 229 (2002). [6] Ben, Y., Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame (2004). [7] Probstein, R. F., Physicochemical Hydrodynamics: An Introduction, 2nd ed., John Wiley and Sons, New York (1994). [8] Attard, P., Antelmi, D. and Larson, I., “Comparsion of Zata Potential with the Diffuse Layer Potential from Charge Titration, Langmuir, 16, 1542 (2000). [9] Theemsche, A. V., Deconinck, J., Bossche, B. V. and Bortels, L., “Numerical Solution of a Multi-ion One-potential Model for Electroosmotic Flow in Two-dimensional Rectangular Microchannels, Anal. Chem., 74, 4919 (2002). [10] Morgan, H. and Green, N. G., AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, Hertfordshire (2003). [11] Stone, H. A., Stroock, A. D. and Ajdari, A., “Engineering Flows in Small Devices: Microfluidics toward a Lab-on-a-Chip, Annu. Rev. Fluid Mech., 36, 381 (2004). [12] Squires, T. M. and Quake, S. R., “Microfluidics: Fluid Physics at the Nanoliter Scale, Rev. Mod. Phys., 77, 997 (2005). [13] Ghosal, S., “Fluid Mechanics of Electroosmotic Flow and Its Effect on Band Broadening in Capillary Electrophoresis, Electrophoresis, 25, 214 (2004). [14] Brunet, E. and Ajdari, A., “Thin Double Layer Approximation to Describe Streaming Current Fields in Complex Geometries: Analytical Framework and Applications to Microfluidics, Phys. Rev. E, 73, 056306 (2006). [15] Qian, S. and Bau, H. H., “A Chaotic Electroosmotic Stirrer, Anal. Chem., 74, 3616 (2002). [16] Long, D., Stone, H. A. and Ajdari, A., “Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis, J. Colloid Interface Sci., 212, 338 (1999). [17] Wang, S., Hu, X. and Lee, L. J., “Dynamic Assembly by Electrokinetic Microfluidics, J. Am. Chem. Soc., 129, 254 (2007). [18] Dukhin, S. S. and Miller, R., “On the Theory of Adsorption Kinetics of Ionic Surfactants at Fluid Interfaces 3. Generalization of the Model, Colloid Polym. Sci., 269, 923 (1991). [19] Gonz?lez, A., Ramos, A., Green, N. G., Castellanos, A. and Morgan, H., “Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double-layer Analysis, Phys. Rev. E, 61, 4019 (2000). [20] Lastochkin, D., Zhou, R., Wang, P., Ben, Y. and Chang, H. C., “Electrokinetic Micropump and Micromixer Design Based on AC Faradaic Polarization, J. Appl. Phys., 96, 1730 (2004). [21] Perch-Nielsen, I. R., Green, N. G. and Wolff, A., “Numerical Simulation of Travelling Wave Induced Electrothermal Fluid Flow, J. Phys. D: Appl. Phys., 37, 2323 (2004). [22] Sigurdson, M., Wang, D. Z. and Meinhart, C. D., “Electrothermal Stirring for Heterogeneous Immunoassays, Lab Chip, 5, 1366 (2005). [23] Thamida, S. K. and Chang, H. C., “Nonlinear Electrokinetic Ejection and Entrainment Due to Polarization at Nearly Insulated Wedges, Phys. Fluids, 14, 4315 (2002). [24] Squires, T. M. and Bazant, M. Z., “Induced-charge Electro-osmosis, J. Fluid Mech., 509, 217 (2004). [25] Ramos, A., Morgan, H., Green, N. G. and Castellanos, A., “AC Electric-field-induced Fluid Flow in Microelectrodes, J. Colloid Interface Sci. 217, 420 (1999). [26] Ajdari, A., “Pumping Liquids Using Asymmetric Electrode Arrays, Phys. Rev. E, 61, R45 (2000). [27] Anderson, J. L. and Idol, W. K., “Electroosmosis Through Pores with Nonuniformly Charged Walls, Chem. Engng Commun., 38, 93 (1985). [28] Ajdari, A., “Electroosmosis on Inhomogeneously Charged Surfaces, Phys. Rev. Lett., 75, 755 (1995). [29] Biddiss, E., Erickson, D. and Li, D., “Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows, Anal. Chem., 76, 3208 (2004). [30] Halpern, D. and Wei, H. H., “Electroosmotic Flow in A Microcavity with Nonuniform Surface Charges, Langmuir, 23, 9505 (2007). [31] Qian, S. and Bau, H. H., “Theoretical Investigation of Electro-osmotic Flows and Chaotic Stirring in Rectangular Cavities, Appl. Math. Model., 29, 726 (2005). [32] Erickson, D. and Li, D. Q., “Three-dimensional Structure of Electroosmotic Flow over Heterogeneous Surfaces, J. Phys. Chem. B, 107, 12212 (2003). [33] Ren, L. Q. and Li, D. Q., “Electroosmotic Flow in Heterogeneous Microchannels, J. Colloid Interface Sci., 243, 255 (2001). [34] Hlushkou, D., Kandhai, D., Tallarek, U., “Coupled Lattice-Boltzmann and Finite-difference Simulation of Electroosmosis in Microfluidic Channels, Int. J. Numer. Meth. Fluids, 46, 507 (2004). [35] Ghosal, S. and Lu, Z., “Electroosmotic Flow and Zone Broadening in Microfluidic Channels of Variable Cross-section and Wall Charge, Technical Proceedings of the 2002 International Conference on Simulation of Microsystems; Nano Science and Technology Institute: San Juan (2002). [36] Gleeson, J. P., “Electroosmotic Flows with Random Zeta Potential, J. Colloid Interface Sci., 249, 217 (2002). [37] Holmes, D. and Morgan, H., Particle Focusing and Separation Using Dielectrophoresis in a Microfluidic Device, Kluwer Academic Publishers, Massachusetts (2001). [38] Wu, J., Ben, Y., Battigelli, D. and Chang, H. C., “Long-range AC Electroosmotic Trapping and Detection of Bioparticles, Ind. Eng. Chem. Res., 44, 2815 (2005). [39] Wong, P. K., Wang, T. H., Deval, J. H. and Ho, C. M., “Electrokinetics in Micro Devices for Biotechnology Applications, IEEE/ASME Trans. Mechantronic, 9, 366 (2004). [40] Kreft, J., Chen, Y. L. and Chang, H. C., “Conformation and Trapping Rate of DNA at a Convergent Stagnation Point, Phys. Rev. E, 77, 030801(R) (2008). [41] Du, J. R., Juang, Y. J., Wu, J. T. and Wei, H. H., “Long-range and Superfast Trapping of DNA Molecules in an AC Electrokinetic Funnel, Biomicrofluidics, 2, 044103 (2008). [42] Hou, D. and Chang, H. C., “Electrokinetic Particle Aggregation Patterns in Microvortices Due to Particle-field Interaction, Phys. Fluids, 18, 071702 (2006). [43] Yeo, L. Y., Hou, D., Maheshwari, S. and Chang, H. C., “Electrohydrodynamic Surface Microvortices for Mixing and Particle Trapping, Appl. Phys. Lett., 88, 233512 (2006). [44] Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M. and Whitesides, G. M., “FLASH: A Rapid Method for Prototyping Paper-based Microfluidic Devices, Lab Chip, 8, 2146 (2008). [45] Yeo L.Y. and Friend, J. R., “Ultrafast Microfluidics Using Surface Acoustic Waves, Biomicrofluidics, 3, 012002 (2009). [46] Chang, H. C. and Yossifon, G., “Understanding Electrokinetics at the Nanoscale: A Perspective, Biomicrofluidics, 3, 012001 (2009). [47] Hou, D., Maheshwari, S. and Chang, H. C., “Rapid Bioparticle Concentration and Detection by Combining a Discharge Driven Vortex with Surface Enhanced Raman Scattering, Biomicrofluidics, 1, 014106 (2007). [48] Maxey, M. R. and Riley, J. J., “Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow, Phys. Fluids, 26, 883 (1983). [49] Rubin, J., Jones, C. K. R. T. and Maxey, M., “Settling and Asymptotic Motion of Aerosol Particles in a Cellular Flow Field, J. Nonlinear Sci., 5, 337 (1995). [50] Druzhinin, O. A., Ostrovsky, L. A. and Stepanyants, Y. A., “Dynamics of Particles in the Steady Flows of an Inviscid Fluid, Chaos, 3, 359 (1993). [51] Angilella, J. R., “Asymptotic Analysis of Chaotic Particle Sedimentation and Trapping in the Vicinity of a Vertical Upward Streamline, Phys. Fluids, 19, 073302 (2007). [52] Tio, K. K., Ganan-Calvo, A. M. and Lasheras, J. C., “The Dynamics of Small, Heavy, Rigid Spherical Particles in a Periodic Stuart Vortex Flow, Phys. Fluids A, 5, 1679 (1993). [53] Marcu, B., Meiburg, E. and Newton, P. K., “Dynamics of Heavy Particles in a Burgers Vortex, Phys. Fluids, 7, 400 (1995). [54] Vilela, R. D. and Motter, A. E., “Can Aerosols Be Trapped in Open Flows? Phys. Rev. Lett., 99, 264101 (2007). [55] Sapsis, T. and Haller, G., “Clustering Criterion for Inertial Particles in Two-dimensional Time-periodic and Three-dimensional Steady Flows, Chaos, 20, 017515 (2010). [56] Angilella, J. R., “Dust Trapping in Inviscid Vortex Pairs, arXiv:1003.3842v1 [physics.flu-dyn] (2010). [57] Nizkaya, T., Angilella, J. R. and Bues, M., “Note on Dust Trapping in Inviscid Vortex Pairs with Unequal Strengths, arXiv:1003.4644v2 [physics.flu-dyn] (2010). [58] Liu, S. J., Hwang, S. H. and Wei, H. H., “Nonuniform Electro-osmotic Flow on Charged Strips and Its Use in Particle Trapping, Langmuir, 24, 13776 (2008). [59] Wei, H. H., “Shear-modulated Electroosmotic Flow on a Patterned Charged Surface, J. Colloid Interface Sci., 284, 742 (2005). [60] Kim, S. J., Kang, K. H., Lee, J. G., Kang, I. S. and Yoon, B. J., “Control of Particle-deposition Pattern in a Sessile Droplet by Using Radial Electroosmotic Flow, Anal. Chem., 78, 5192 (2006). [61] Milne-Thomson, L. M., Theoretical Hydrodynamics, Macmillan, London (1968). [62] Leal, L. G., Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis, Butterworth-Heinemann College, Boston (1992). [63] Islam, N., Lian, M. and Wu, J., “Enhancing Microcantilever Capability with Integrated AC Electroosmotic Trapping, Microfluid. Nanofluid., 3, 369 (2007). [64] Gagnon, Z. and Chang, H. C., “Aligning Fast Alternating Current Electroosmotic Flow Fields and Characteristic Frequencies with Dielectrophoretic Traps to Achieve Rapid Bacteria Detection, Electrophoresis, 26, 3725 (2005). [65] Feldman, H. C., Sigurdson, M. and Meinhart, C. D., “AC Electrothermal Enhancement of Heterogeneous Assays in Microfluidics, Lab Chip, 7, 1553 (2007). [66] Hunter, R. J., Foundations of Colloid Science, 2nd ed., Oxford University Press, New York (2000). [67] Babiano, A., Cartwright, J. H. E., Piro, O. and Provenzale, A., “Dynamics of A Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems, Phys. Rev. Lett., 84, 5764 (2000). [68] Stommel, H., “Trajectories of Small Bodies Sinking Slowly Through Convection Cells, J. Marine Res., 8, 24 (1949). [69] Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York (1983). [70] Anderson, J. L., “Colloid Transport by Interfacial Forces, Ann. Rev. Fluid Mech., 21, 61 (1989).
|