[1] W. P. Mason. 1981. Piezoelectricity, its history and applications. The Journal of the Acoustical Society of America. 70, 1561.
[2] Baidu. 2014. Piezoelectricity. Available at: http://baike.baidu.com. Accessed 26 April 2014.
[3] Wikipedia. 2014. Piezoelectricity. Available at: http://zh.wikipedia.org. Accessed 26 April 2014.
[4] Wikipedia. 2014. Zinc Oxide. Available at: http://zh.wikipedia.org. Accessed 27 April 2014.
[5] 黃信瀚。2009。新型PVDF壓電獵能器之設計分析與實驗研究。碩士論文。國立成功大學電機工程學系研究所。[6] Z. L. Wang and J. H. Song. 2006. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 312. 242.
[7] J. H. Song, J. Zhou, and Z. L. Wang. 2006. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO BeltWire. A Technology for Harvesting Electricity from the Environment. Nano Letters. 6 (8). 1656-1662.
[8] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang. 2007. Direct-current nanogenerator driven by ultrasonic wave. Science. 316. 102
[9] M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang. 2009. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Letters. 9 (3), 1223-1227
[10] Wikipedia. 2014. 壓電光電子學. Available at: http://zh.wikipedia.org. Accessed 26 April 2014
[11] Z. L. Wang. 2009. Piezotronic and Piezophototronic Effects. The Journal of Physical Chemistry Letters. 1, 1388-1393.
[12]. Z. L. Wang. 2010. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today. 5, 540-552.
[13] Y. F. Hu, Y. L. Chang, P. Fei, R. L. Snyder and Z. L. Wang. 2010. Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects. ACS Nano. 4, 1234-1240.
[14] Z. L. Wang. 2012. From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures. MRS Bulletin. 37, 814-827.
[15] Z. L. Wang. 2012. Progress in Piezotronics and Piezo-Phototronics. Advanced Materials. 24, 4632-4646.
[16] Q. Yang, X. Guo, W. H Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang. 2010. Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. ACS Nano. 4, 6285-6291.
[17] Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, and Z. L. Wang. 2011. Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/ Nanowire Heterojunction Solar Cells, Nano Letters. 11, 4812-4817.
[18] Y. Zhang, Y. Yang and Z. L. Wang. 2012. Piezo-phototronics effect on nano/microwire solar cells. Energy & Environmental Science. 5, 6850-6856.
[19] Q. Yang, W.H. Wang, S. Xu, and Z. L. Wang. 2011. Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect. Nano Letters. 11, 4012-4017.
[20] Y. Zhang and Z. L. Wang. 2012. Theory of Piezo-Phototronics for Light-Emitting Diodes. Advanced Materials. 24, 4712-4718.
[21] Y.F. Hu, Y. Zhang, Y.L. Chang, R. L. Snyder, and Z. L. Wang. 2010. Optimizing the Power Output of a ZnO Photocell by Piezopotential. ACS Nano. 4, 4220-4224.
[22] C. L. Hsu and K. C. Chen. 2012. Improving Piezoelectric Nanogenerator Comprises ZnO Nanowires by Bending the Flexible PET Substrate at Low Vibration Frequency. The Journal of Physical Chemistry C. 116 (16), 9351–9355.
[23] 陳冠超。2012。銻摻雜氧化鋅奈米線之合成與應用。碩士論文。國立臺南大學電機工程研究所。[24] 趙偉迪。2009。氧化鋅奈米線應用於發光二極體之研製。碩士論文。國立台灣師範大學機電科技研究所。[25] 高義典。2013。以Hotwire系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究。碩士論文。國立臺南大學電機工程研究所。[26] P. Y. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, H. H. Li, H. C. Cheng. 2011. pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures. IEEE Electron Device Letters. Vol. 32 No.11, 1603-1605.
[27] K. P. Kim, D. Chang, S. K. Lim, S.K. Lee, H. K. Lyu, D. K. Hwang. 2011. Thermal Annealing Effects on the Dynamic Photoresponse Properties of Al-Doped ZnO Nanowires Network. Current Applied Physics. 11, 1311-1314.
[28] B. Viana, O. Lupan, T. Pauporté. 2011. Directional and magnetic field enhanced emission of Cu-doped ZnO nanowires/p-GaN heterojunction light-emitting diodes. Journal of Nanophotonics. 5, 051816
[29] W. Guo, T. Liu, W. Zeng, D. Liu, Y. Chen, Z. C. Wang. 2011. Gas-sensing property improvement of ZnO by hierarchical flower-like architectures. Materials Letters. 65(23), 3384-3387.
[30] J. H. Cho, Q. B. Lin, S. W. Yang, J. G. Simmons Jr., Y. W Cheng, E. Lin, J. Q. Yang, J. V. Foreman, H. O. Everitt, W. Yang, J. S. Kim, and J. Liu. 2012. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism. Nano Research. 5(1), 20–26.
[31] J. L. Zhai, L. L. Wang, D. J. Wang, Y. H. Lin, D. Q. He, T. F. Xie. 2012. UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres. Sensors and Actuators B: Chemical. 161, 292-297.
[32] A. B. Yankovich, B. Puchala, F. Wang, J. H. Seo, D. Morgan, X. D. Wang, Z. Q. Ma, A. V. Kvit, and P. M. Voyles. 2012. Stable p-Type Conduction from Sb-Decorated Head-to-Head Basal Plane Inversion Domain Boundaries in ZnO Nanowires. Nano Letters. 12(3), pp 1311-1316.
[33] L. L. Wang, B. Z. Lin, L. Zhou, Y. X. Shang, G. N. Panin, D. J. Fu. 2012. Nitrogen-doped ZnO nanorods prepared by hydrothermal diffusion. Materials Letters. 85, 171-174.
[34] T. Holloway, R. Mundle, H. Dondapati, M. Bahoura, A.K. Pradhan. 2012. Aligned Al:ZnO nanorods on Si with different barrier layers for optoelectronic applications. Chemical Physics Letters. 534, 48-53.
[35] R. J. Ramalingam, G.S. Chung. 2012. Polymer assisted Ga doped ZnO nanodisk/nanorod structures prepared by a low temperature one-pot hydrothermal method. Materials Letters. 68, 247-250.
[36] G.N. Dar, Ahmad Umar, S.A. Zaidi, Ahmed A. Ibrahim, M. Abaker, S. Baskoutas, M.S. Al-Assiri. 2012. Ce-doped ZnO nanorods for the detection of hazardous chemical. Sensors and Actuators B: Chemical. 173, 72-78.
[37] S. H. Lee, J. S. Lee, W. B. Ko, J. I. Sohn, S. N. Cha, J. M. Kim, Y. J. Park, and J. P. Hong. 2013. Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method. Applied Physics Express. 5, 095002.
[38] L. Yang, Z. Wang, Z. Q. Zhang, Y. F. Sun, M. Gao, J. H. Yang, and Y. S. Yan. 2013. Surface effects on the optical and photocatalytic properties of graphene-like ZnO:Eu3+ nanosheets. Journal of Applied Physics. 113, 033514.
[39] A. Guerrero and M. Herrera. 2013. CL from impurities and point defects in ZnO:Mn nanorods grown by the hydrothermal method. Semiconductor Science and Technology. 28, 035012.
[40] K. Mahmood, H. W. Kang, S. B. Park, and H. J. Sung. 2013. Hydrothermally Grown Upright-Standing Nanoporous Nanosheets of Iodine-Doped ZnO (ZnO:I) Nanocrystallites for a High-Efficiency Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces. 5, 3075-3084.
[41] C. H. Hsiao, C. S. Huang, S. J. Young, S. J. Chang, J. J. Guo, C. W. Liu, and T. Y. Yang. 2013. Field-Emission and Photoelectrical Characteristics of Ga–ZnO Nanorods Photodetector. IEEE Transactions on Electron Devices. Vol. 60, No. 6. 1905-1910.
[42] S. J. Chang, B. G. Duan, C. W. Liu, C. H. Hsiao, S. J. Young and C. S. Huang. 2013. UV Enhanced Indium-Doped ZnO Nanorod Field Emitter. IEEE Transactions on Electron Devices. Vol. 60, No. 11, 3901-3906
[43] N. R. Panda, B. S. Acharya, P. Nayak. 2013. Growth and enhanced optical properties of ZnO:S nanorods and multipodes. Materials Letters. 100, 257-260.
[44] M. Babikier, D. B. Wang, J. Z. Wang, Q. Li, J. M. Sun, Y. Yan, Q. J. Yu, S. J. Jiao. 2014. Fabrication and properties of sulfur (S)-doped ZnO nanorods. Journal of Materials Science-Materials in Electronics. 25, 157-162.
[45] C. L. Hsu, C. W. Su, T. J. Hsueh. 2014. Enhanced Field Emission of Al-Doped ZnO Nanowires Grown on Flexible Polyimide Substrate with UV Exposure. RSC Advances. 4, 2980-2983.
[46] S. R. Hejazi, H. R. Madaah Hosseini, M. Sasani Ghamsari. 2008. The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism. Journal of Alloys and Compounds. 455, 353-357.
[47] B. Lewis. 1974. The growth of crystals of low supersaturation: I. Theory. Journal of Crystal Growth. 21, 29-39.
[48] 許安迪。2010。以水熱法製備氧化鋅奈米線與銀奈米顆粒之研究。碩士論文。國立臺南大學電機工程研究所。[49] C. L. Hsu, H. H. Li, and T. J. Hsueh. 2013. Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate. RCS Applied Materials and Interfaces. 5(21), 11142-11151.
[50] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang. 2006. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Letters. Vol. 6, No. 12. 2768-2772.
[51] Z. Z. Wang, J. J. Qi, S. N. Lu, P. F. Li, X. Li, and Y. Zhang. 2013. Enhancing sensitivity of force sensor based on a ZnO tetrapod by piezo-phototronic effect. Applied Physics Letters. 103, 143125.
[52] L. Vayssieres. 2003. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials. 15, 464-466.
[53] X. D. Yan, Z. W. Li, R. Q. Chen and W. Gao. 2008. Template Growth of ZnO Nanorods and Microrods with Controllable Densities. Crystals Growth Design. 8, 2406-2410.
[54] B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng, and L. D. Zhang. 2003. Synthesis and optical properties of S-doped ZnO nanowires. Applied Physics Letters. 82, 4791.
[55] G. Z. Shen, J. H. Cho, S. I. Jung, C. J. Lee. 2005. Synthesis and characterization of S-doped ZnO nanowires produced by a simple solution-conversion process. Chemical Physics Letters. 401, 529-533.
[56] G. Z. Shen, J. H. Cho, J. K. Yoo, G. C. Yi, and C. J. Lee. 2005. Synthesis and Optical Properties of S-Doped ZnO Nanostructures: Nanonails and Nanowires. The Journal of Physical Chemistry B. 109, 5491-5496.
[57] X. H. Zhang, X. Q. Yan, J. Zhao, Z. Qin, Y. Zhang. 2009. Structure and photoluminescence of S-doped ZnO nanorod arrays. Materials Letters. 63, 444-446.
[58] 國立成功大學微奈米中心. 2014. 儀器設備介紹. Available at: http://cmnst.ncku.edu.tw Accessed 27 April 2014.
[59] S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga. 2007. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension Original Research Article. Journal of Molecular Catalysis A: Chemical. 266, 149-157.
[60] S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit. 2013. Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceramics International. 39, 2811-2819.
[61] Wikipedia. 2014. 半導體. Available at: http://zh.wikipedia.org. Accessed 7 May 2014.
[62] Wikipedia. 2014. 波茲曼常數. Available at: http://zh.wikipedia.org. Accessed 28 May 2014.
[63] Wikipedia. 2014. 分子運動論. Available at: http://zh.wikipedia.org. Accessed 28 May 2014.