跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇奕龍
研究生(外文):I-Long Su
論文名稱:硫摻雜氧化鋅奈米線合成於軟性PET基板成長之壓電元件研究
論文名稱(外文):Flexible Piezoelectric Nanogenerators Based on Sulfur Doped ZnO Nanowires Grown on Flexible PET Substrates
指導教授:許正良許正良引用關係
指導教授(外文):Cheng-Liang Hsu
口試委員:張守進許正良邱裕中
口試委員(外文):Shou-Jin ChangCheng-Liang HsuYu-Zung Chiou
口試日期:2014-06-10
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:氧化鋅奈米線水熱法軟性PET基板壓電
外文關鍵詞:ZnO NanowiresSulfurHydrothermalFlexible PET SustratesPiezoelectric
相關次數:
  • 被引用被引用:10
  • 點閱點閱:707
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,成功利用水熱法成長硫摻雜氧化鋅奈米線於軟性PET 基板,並進行各種硫摻雜的晶體之分析,包含SEM、EDS、XRD、PL 及TEM。於EDS分析中可以得知硫的元素摻雜百分比有達到2.03%。XRD的分析中,所有硫摻雜氧化鋅奈米線的峰值皆往更小的角度位移。並由PL進行的分析比較,發現硫摻雜氧化鋅奈米線於綠光放射波段相較於一般氧化鋅有藍移的現象。也從TEM EDS-Mapping的分析中得知,硫的原子平均的分佈在氧化鋅奈米線上。
在硫摻雜氧化鋅奈米線於軟性PET 基板的實驗分析,我們將其製作為元件,並於不同濕度及溫度的條件下量測其壓電特性。我們也在不同濕度條件下,使用波長為365nm的UV燈量測並探討其壓電特性對阻抗的變化。在最後一個部分,我們使用環境震動以驅動我們的元件,並改變不同的形變量,同時使用波長365nm 的UV 燈進行比較以探討其壓電特性。
In this study, the S doped ZnO nanowires were successfully synthesized on flexible PET substrate by hydrothermal. The crystalline structure of these S doped samples were measured with SEM, EDS, XRD, PL and TEM. The doping concentration of sulfur into ZnO nanowires was 2.03 atm % in EDS. All XRD peaks of S doped ZnO shift to smaller angle. Photoluminescence spectra of S-doped ZnO nanowires show blue shift phenomenon of the green emissions compared with that of pure ZnO nanowires. By TEM EDS-Mapping analysis, we also can see that the S atomic were uniform distributed over the ZnO nanowires.
In the S doped ZnO nanowires on flexible PET substrate, we combined it with device for measured the piezoelectric properties with different relative humidity (RH) and different temperature conditions. We also measured the piezoelectric properties with different relative humidity and used the 365nm UV lamp to discuss its resistance variation. In the last section, we used environmental vibration for driving our device to measure with different strain and 365nm UV lamp conditions to investigate the piezoelectric properties of it.
摘要 .......................................................................................................................................................... I
Abstract ................................................................................................................................................. II
致謝 ........................................................................................................................................................ III
目錄 ........................................................................................................................................................ IV
表目錄 ................................................................................................................................................... VII
圖目錄 .................................................................................................................................................. VIII
第一章 序論 ............................................................................................................................... 1
1.1 前言 .............................................................................................................................................. 1
1.2 壓電效應(Piezoelectric Effect)簡介 ............................................................................................ 2
1.2.1 壓電效應發展 ....................................................................................................................... 2
1.2.2 壓電效應原理 ....................................................................................................................... 3
1.2.2.1 正、逆壓電效應 ................................................................................... 3
1.2.2.2 壓電效應的產生 ................................................................................... 5
1.2.2.3 壓電效應的工作模式 ........................................................................... 6
1.2.3 壓電效應於半導體之應用 ................................................................................................... 8
1.3 氧化鋅材料簡介 .......................................................................................................................... 9
1.3.1 氧化鋅簡介 ........................................................................................................................... 9
1.3.2 氧化鋅的發光機制 ............................................................................................................. 10
1.3.3 氧化鋅的摻雜影響 ............................................................................................................. 11
1.3.4 氧化鋅的製備 ..................................................................................................................... 13
1.3.4.1 氣-液-固法(Vapor-Liquid-Solid, VLS) ............................................... 13
1.3.4.2 氣-固法(Vapor-Solid, VS) ................................................................... 14
1.3.4.3 水熱法(Hydrothermal method) ........................................................... 14
1.3.5 氧化鋅的應用 ..................................................................................................................... 15
1.3.5.1 光檢測器 .............................................................................................. 15
1.3.5.2 濕度檢測器 ......................................................................................... 16
1.3.5.3 壓電輔助的檢測器應用 ..................................................................... 18
第二章 實驗方法與步驟 ......................................................................................................... 20
2.1 實驗流程及架構 ......................................................................................................................... 20
2.2 水熱法成長 ................................................................................................................................. 21
2.2.1 水熱法原理 .......................................................................................................................... 21
2.2.2 水熱法成長氧化鋅奈米線 .................................................................................................. 22
2.2.3 水熱法成長硫摻雜氧化鋅奈米線 ...................................................................................... 23
第三章 分析儀器介紹 ............................................................................................................. 26
3.1 分析儀器 ..................................................................................................................................... 26
3.1.1 掃描式電子顯微鏡(Scanning electrons microscope,SEM) ............................................... 26
3.1.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) .................................................. 27
3.1.3 X 光繞射分析儀(X-Ray Diffractometer,XRD) ................................................................... 28
3.1.4 光激發螢光光譜儀(Photoluminescence,PL) ...................................................................... 29
3.1.5 穿透式電子顯微鏡(Transmission electron microscope,TEM) .......................................... 30
3.2 量測儀器 .................................................................................................................................... 31
3.2.1 Keithley-4200 ....................................................................................................................... 31
3.2.2 Stanford SR560/ Stanford SR570/ NI-BNC-2120 ............................................................... 31
第四章 材料特性分析 ............................................................................................................. 34
4.1 氧化鋅奈米線形貌分析 ............................................................................................................ 34
4.2 硫摻雜氧化鋅奈米線分析 ........................................................................................................ 34
4.2.1 硫摻雜氧化鋅奈米線之SEM 及EDS 分析 ..................................................................... 34
4.2.2 硫摻雜氧化鋅奈米線之XRD 分析................................................................................... 41
4.2.3 硫摻雜氧化鋅奈米線之PL 分析 ...................................................................................... 42
4.2.4 硫摻雜氧化鋅奈米線之TEM 分析................................................................................... 43
第五章 元件製作與特性量測 ................................................................................................. 46
5.1 元件製作流程 ............................................................................................................................ 46
5.2 元件特性量測 ............................................................................................................................ 48
5.2.1 利用重物使元件形變探討於不同環境下之元件阻抗變化 .............................................. 48
5.2.1.1 於不同濕度、光照及形變下之比較 ................................................. 48
5.2.1.2 於不同濕度、溫度及形變下之比較 ................................................. 56
5.2.2 利用環境震盪源及重物施壓對元件產升形變之探討 ...................................................... 67
第六章 結論與未來展望 ..................................................................................................................... 76
6.1 結論 ............................................................................................................................................ 76
6.2 未來展望 .................................................................................................................................... 77
參考文獻 ............................................................................................................................................... 78
[1] W. P. Mason. 1981. Piezoelectricity, its history and applications. The Journal of the Acoustical Society of America. 70, 1561.
[2] Baidu. 2014. Piezoelectricity. Available at: http://baike.baidu.com. Accessed 26 April 2014.
[3] Wikipedia. 2014. Piezoelectricity. Available at: http://zh.wikipedia.org. Accessed 26 April 2014.
[4] Wikipedia. 2014. Zinc Oxide. Available at: http://zh.wikipedia.org. Accessed 27 April 2014.
[5] 黃信瀚。2009。新型PVDF壓電獵能器之設計分析與實驗研究。碩士論文。國立成功大學電機工程學系研究所。
[6] Z. L. Wang and J. H. Song. 2006. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 312. 242.
[7] J. H. Song, J. Zhou, and Z. L. Wang. 2006. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO BeltWire. A Technology for Harvesting Electricity from the Environment. Nano Letters. 6 (8). 1656-1662.
[8] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang. 2007. Direct-current nanogenerator driven by ultrasonic wave. Science. 316. 102
[9] M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang. 2009. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Letters. 9 (3), 1223-1227
[10] Wikipedia. 2014. 壓電光電子學. Available at: http://zh.wikipedia.org. Accessed 26 April 2014
[11] Z. L. Wang. 2009. Piezotronic and Piezophototronic Effects. The Journal of Physical Chemistry Letters. 1, 1388-1393.
[12]. Z. L. Wang. 2010. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today. 5, 540-552.
[13] Y. F. Hu, Y. L. Chang, P. Fei, R. L. Snyder and Z. L. Wang. 2010. Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects. ACS Nano. 4, 1234-1240.
[14] Z. L. Wang. 2012. From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures. MRS Bulletin. 37, 814-827.
[15] Z. L. Wang. 2012. Progress in Piezotronics and Piezo-Phototronics. Advanced Materials. 24, 4632-4646.
[16] Q. Yang, X. Guo, W. H Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang. 2010. Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. ACS Nano. 4, 6285-6291.
[17] Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, and Z. L. Wang. 2011. Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/ Nanowire Heterojunction Solar Cells, Nano Letters. 11, 4812-4817.
[18] Y. Zhang, Y. Yang and Z. L. Wang. 2012. Piezo-phototronics effect on nano/microwire solar cells. Energy & Environmental Science. 5, 6850-6856.
[19] Q. Yang, W.H. Wang, S. Xu, and Z. L. Wang. 2011. Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect. Nano Letters. 11, 4012-4017.
[20] Y. Zhang and Z. L. Wang. 2012. Theory of Piezo-Phototronics for Light-Emitting Diodes. Advanced Materials. 24, 4712-4718.
[21] Y.F. Hu, Y. Zhang, Y.L. Chang, R. L. Snyder, and Z. L. Wang. 2010. Optimizing the Power Output of a ZnO Photocell by Piezopotential. ACS Nano. 4, 4220-4224.
[22] C. L. Hsu and K. C. Chen. 2012. Improving Piezoelectric Nanogenerator Comprises ZnO Nanowires by Bending the Flexible PET Substrate at Low Vibration Frequency. The Journal of Physical Chemistry C. 116 (16), 9351–9355.
[23] 陳冠超。2012。銻摻雜氧化鋅奈米線之合成與應用。碩士論文。國立臺南大學電機工程研究所。
[24] 趙偉迪。2009。氧化鋅奈米線應用於發光二極體之研製。碩士論文。國立台灣師範大學機電科技研究所。
[25] 高義典。2013。以Hotwire系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究。碩士論文。國立臺南大學電機工程研究所。
[26] P. Y. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, H. H. Li, H. C. Cheng. 2011. pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures. IEEE Electron Device Letters. Vol. 32 No.11, 1603-1605.
[27] K. P. Kim, D. Chang, S. K. Lim, S.K. Lee, H. K. Lyu, D. K. Hwang. 2011. Thermal Annealing Effects on the Dynamic Photoresponse Properties of Al-Doped ZnO Nanowires Network. Current Applied Physics. 11, 1311-1314.
[28] B. Viana, O. Lupan, T. Pauporté. 2011. Directional and magnetic field enhanced emission of Cu-doped ZnO nanowires/p-GaN heterojunction light-emitting diodes. Journal of Nanophotonics. 5, 051816
[29] W. Guo, T. Liu, W. Zeng, D. Liu, Y. Chen, Z. C. Wang. 2011. Gas-sensing property improvement of ZnO by hierarchical flower-like architectures. Materials Letters. 65(23), 3384-3387.
[30] J. H. Cho, Q. B. Lin, S. W. Yang, J. G. Simmons Jr., Y. W Cheng, E. Lin, J. Q. Yang, J. V. Foreman, H. O. Everitt, W. Yang, J. S. Kim, and J. Liu. 2012. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism. Nano Research. 5(1), 20–26.
[31] J. L. Zhai, L. L. Wang, D. J. Wang, Y. H. Lin, D. Q. He, T. F. Xie. 2012. UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres. Sensors and Actuators B: Chemical. 161, 292-297.
[32] A. B. Yankovich, B. Puchala, F. Wang, J. H. Seo, D. Morgan, X. D. Wang, Z. Q. Ma, A. V. Kvit, and P. M. Voyles. 2012. Stable p-Type Conduction from Sb-Decorated Head-to-Head Basal Plane Inversion Domain Boundaries in ZnO Nanowires. Nano Letters. 12(3), pp 1311-1316.
[33] L. L. Wang, B. Z. Lin, L. Zhou, Y. X. Shang, G. N. Panin, D. J. Fu. 2012. Nitrogen-doped ZnO nanorods prepared by hydrothermal diffusion. Materials Letters. 85, 171-174.
[34] T. Holloway, R. Mundle, H. Dondapati, M. Bahoura, A.K. Pradhan. 2012. Aligned Al:ZnO nanorods on Si with different barrier layers for optoelectronic applications. Chemical Physics Letters. 534, 48-53.
[35] R. J. Ramalingam, G.S. Chung. 2012. Polymer assisted Ga doped ZnO nanodisk/nanorod structures prepared by a low temperature one-pot hydrothermal method. Materials Letters. 68, 247-250.
[36] G.N. Dar, Ahmad Umar, S.A. Zaidi, Ahmed A. Ibrahim, M. Abaker, S. Baskoutas, M.S. Al-Assiri. 2012. Ce-doped ZnO nanorods for the detection of hazardous chemical. Sensors and Actuators B: Chemical. 173, 72-78.
[37] S. H. Lee, J. S. Lee, W. B. Ko, J. I. Sohn, S. N. Cha, J. M. Kim, Y. J. Park, and J. P. Hong. 2013. Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method. Applied Physics Express. 5, 095002.
[38] L. Yang, Z. Wang, Z. Q. Zhang, Y. F. Sun, M. Gao, J. H. Yang, and Y. S. Yan. 2013. Surface effects on the optical and photocatalytic properties of graphene-like ZnO:Eu3+ nanosheets. Journal of Applied Physics. 113, 033514.
[39] A. Guerrero and M. Herrera. 2013. CL from impurities and point defects in ZnO:Mn nanorods grown by the hydrothermal method. Semiconductor Science and Technology. 28, 035012.
[40] K. Mahmood, H. W. Kang, S. B. Park, and H. J. Sung. 2013. Hydrothermally Grown Upright-Standing Nanoporous Nanosheets of Iodine-Doped ZnO (ZnO:I) Nanocrystallites for a High-Efficiency Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces. 5, 3075-3084.
[41] C. H. Hsiao, C. S. Huang, S. J. Young, S. J. Chang, J. J. Guo, C. W. Liu, and T. Y. Yang. 2013. Field-Emission and Photoelectrical Characteristics of Ga–ZnO Nanorods Photodetector. IEEE Transactions on Electron Devices. Vol. 60, No. 6. 1905-1910.
[42] S. J. Chang, B. G. Duan, C. W. Liu, C. H. Hsiao, S. J. Young and C. S. Huang. 2013. UV Enhanced Indium-Doped ZnO Nanorod Field Emitter. IEEE Transactions on Electron Devices. Vol. 60, No. 11, 3901-3906
[43] N. R. Panda, B. S. Acharya, P. Nayak. 2013. Growth and enhanced optical properties of ZnO:S nanorods and multipodes. Materials Letters. 100, 257-260.
[44] M. Babikier, D. B. Wang, J. Z. Wang, Q. Li, J. M. Sun, Y. Yan, Q. J. Yu, S. J. Jiao. 2014. Fabrication and properties of sulfur (S)-doped ZnO nanorods. Journal of Materials Science-Materials in Electronics. 25, 157-162.
[45] C. L. Hsu, C. W. Su, T. J. Hsueh. 2014. Enhanced Field Emission of Al-Doped ZnO Nanowires Grown on Flexible Polyimide Substrate with UV Exposure. RSC Advances. 4, 2980-2983.
[46] S. R. Hejazi, H. R. Madaah Hosseini, M. Sasani Ghamsari. 2008. The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism. Journal of Alloys and Compounds. 455, 353-357.
[47] B. Lewis. 1974. The growth of crystals of low supersaturation: I. Theory. Journal of Crystal Growth. 21, 29-39.
[48] 許安迪。2010。以水熱法製備氧化鋅奈米線與銀奈米顆粒之研究。碩士論文。國立臺南大學電機工程研究所。
[49] C. L. Hsu, H. H. Li, and T. J. Hsueh. 2013. Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate. RCS Applied Materials and Interfaces. 5(21), 11142-11151.
[50] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang. 2006. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Letters. Vol. 6, No. 12. 2768-2772.
[51] Z. Z. Wang, J. J. Qi, S. N. Lu, P. F. Li, X. Li, and Y. Zhang. 2013. Enhancing sensitivity of force sensor based on a ZnO tetrapod by piezo-phototronic effect. Applied Physics Letters. 103, 143125.
[52] L. Vayssieres. 2003. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials. 15, 464-466.
[53] X. D. Yan, Z. W. Li, R. Q. Chen and W. Gao. 2008. Template Growth of ZnO Nanorods and Microrods with Controllable Densities. Crystals Growth Design. 8, 2406-2410.
[54] B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng, and L. D. Zhang. 2003. Synthesis and optical properties of S-doped ZnO nanowires. Applied Physics Letters. 82, 4791.
[55] G. Z. Shen, J. H. Cho, S. I. Jung, C. J. Lee. 2005. Synthesis and characterization of S-doped ZnO nanowires produced by a simple solution-conversion process. Chemical Physics Letters. 401, 529-533.
[56] G. Z. Shen, J. H. Cho, J. K. Yoo, G. C. Yi, and C. J. Lee. 2005. Synthesis and Optical Properties of S-Doped ZnO Nanostructures: Nanonails and Nanowires. The Journal of Physical Chemistry B. 109, 5491-5496.
[57] X. H. Zhang, X. Q. Yan, J. Zhao, Z. Qin, Y. Zhang. 2009. Structure and photoluminescence of S-doped ZnO nanorod arrays. Materials Letters. 63, 444-446.
[58] 國立成功大學微奈米中心. 2014. 儀器設備介紹. Available at: http://cmnst.ncku.edu.tw Accessed 27 April 2014.
[59] S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga. 2007. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension Original Research Article. Journal of Molecular Catalysis A: Chemical. 266, 149-157.
[60] S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit. 2013. Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceramics International. 39, 2811-2819.
[61] Wikipedia. 2014. 半導體. Available at: http://zh.wikipedia.org. Accessed 7 May 2014.
[62] Wikipedia. 2014. 波茲曼常數. Available at: http://zh.wikipedia.org. Accessed 28 May 2014.
[63] Wikipedia. 2014. 分子運動論. Available at: http://zh.wikipedia.org. Accessed 28 May 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊