跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉珈妏
研究生(外文):Chia-Wen Yeh
論文名稱:陰離子物理吸附多層奈米碳管在染料敏化太陽能電池光電極之應用
論文名稱(外文):Application of Anion-Physisorbed Multi-walled Carbon Nanotubes on Photoelectrode for Dye-sensitized Solar Cells
指導教授:林金福林金福引用關係
口試委員:邱文英何國川
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:173
中文關鍵詞:多層奈米碳管物理吸附法染料敏化太陽能電池二氧化鈦薄膜
外文關鍵詞:Multi-walled carbon nanotubePhysical adsorptionDye-sensitized solar cellsTiO2 thin films
相關次數:
  • 被引用被引用:3
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以物理吸附的方法來對多層奈米碳管進行表面改質,並將其分散在二氧化鈦薄膜中,作為染料敏化太陽能電池的光電極。在表面改質劑的選擇上,分別為陰離子型的十二烷基苯磺酸鈉(SDBS)及分子量為9350、20800、70000的聚苯乙烯磺酸鈉(NaPSS),而非離子型表面改質劑則使用兩性三嵌段共聚物(PEG-PPG-PEG),分別為P123、F68及F108。碳管的表面吸附製程如下,首先於水溶液中將表面改質劑與多層奈米碳管以超音波震盪法進行分散及表面吸附,且將多餘的改質劑利用過濾的方法去除,乾燥後取得表面處理過後的奈米碳管。由UV-vis光譜測定、表面電位分析及粒徑的量測發現,陰離子型表面吸附的碳管在水中之再分散能力比非離子型表面吸附碳管來得好。原因在於陰離子型改質劑具有苯環結構,可與碳管表面進行π-π堆疊。此外,磺酸根離子(SO3-)提供的靜電排斥分散能力比PEG-PPG-PEG的分散力來得大。之後將陰離子型表面吸附碳管分散在二氧化鈦薄膜中,由XRD的結果證實碳管的存在可幫助二氧化鈦結晶形成更多銳態礦相(anatase),並且使穿透度上升。在染料敏化太陽能電池的元件方面,加入0.03wt%陰離子型表面吸附碳管於二氧化鈦能使短路電流值(Jsc)提升約10~12%。光電流的提升使元件具有較高的光電轉換效率、較佳的電子收集效率及較多的電量,原因來自於碳管能提供良好的導電性、二氧化鈦有較多的anatase相及光穿透度的上升,效率最佳的表現為NaPSS(70000)-MWCNT於添加量為0.03wt%時,短路電流及效率分別為20.68mA/cm2及8.42%。另外,為了進一步提升效率,光電極的外層採用大粒徑的二氧化鈦光散射薄膜,得到最佳短路電流及效率分別為21.44mA/cm2及8.84%。

In this thesis, multi-walled carbon nanotubes(MWCNTs) physisorbing anionic and nonionic dispersing agent for surface modification were dispersed in TiO2 thin film utilizing as a photoelectrode for dye-sensitized solar cells (DSSCs). Anionic dispersing agents such as sodium dodecylbenzenesulfonate(SDBS) and poly (sodium4-styrenesulfonate) (NaPSS) with molecular weight of 9350, 20800 and 70000 were used to disperse MWCNTs. We also chose amphiphilic triblocks of PEG-PPG-PEG as nonionic surface modifying agents, such as P123、F68、and F108. The procedure for surface treatment MWCNTs is as following. Surface modifying agents and MWCNTs were dispersed and adsorbed in water by sonication. After fully adsorption, the solution was filtrated to remove the extra dispersing agents. After drying, the surface-modified MWCNTs were obtained. From the results of UV-vis spectroscopy, zeta potential and dynamic light scattering measurements, anionic surface modifying agents have better dispersing power than nonionic surface modifying agents because anionic agents have benzene ring to physisorb onto CNTs via π-π stacking. Furthermore, the electrostatic repulsion from the SO3- groups leads to the charge stabilization of MWCNTs compared to the nonionic agents. Then we dispersed anion-physisorbed MWCNTs onto the TiO2 system. From the XRD results, we found that TiO2 can crystallize into more anatase structures in the presence of MWCNTs. The resulting materials also had higher light transmittance. For the performance of DSSCs with MWCNT-TiO2 photoelectrode, the addition of 0.03wt% CNT to the TiO2 film could enhance the Jsc of DSSC from 18.65mA/cm2 to 19.26 mA/cm2. And the increase of Jsc resulted in higher power conversion efficiency and better charge collection efficiency because of good conductivity of MWCNTs, more anatase TiO2 crystal structures and higher light transmittance of the MWCNT-TiO2 films. The best Jsc and power conversion efficiency of 20.68mA/cm2 and 8.42% were achieved with MWCNT(70000) dispersing in TiO2. In addition, in order to enhance the light harvesting efficiency, the larger size of TiO2 scattering layer was deposited on the outer layer of MWCNT-TiO2 thin films. After addition of the scattering layer, the Jsc and power conversion efficiency were both increased to 21.44mA/cm2 and 8.84%.

第一章 緒論 1
1-1 前言 1
1-2 染料敏化太陽能電池的發展 2
1-3 染料敏化太陽能電池產業未來研發方向 4
1-4 文獻回顧與探討 4
1-4.1 染料敏化太陽能電池簡介與工作原理 4
1-4.1.1 染料敏化太陽能電池的工作原理.........................................4
1-4.1.2 透明導電基板.........................................................................7
1-4.1.3 染料.........................................................................................8
1-4.1.4 工作電極 ...............................................................................10
1-4.1.5 電解質....................................................................................14
1-4.1.6對電極.....................................................................................16
1-4.2 染料敏化太陽能電池的量測技術與輸出特性 17
1-4.2.1 太陽光譜與光源模擬器........................................................17
1-4.2.2 光電流-電壓特徵曲線.......................................................... 19
1-4.2.3 交流阻抗分析........................................................................20
1-4.2.4 IMPS與IMVS之量測...........................................................22
1-4.2.5 電壓下降與電量收集法........................................................24
1-4.3 奈米碳管簡介 25
1-4.4 奈米碳管的表面修飾法 27
1-4.5奈米碳管於染料敏化太陽能電池工作電極的應用 30
1-5 研究目的 32
第二章 實驗設備與方法 36
2-1 藥品器材 36
2-2 儀器設備 37
2-3 不同分子量NaPSS的製備 38
2-4 表面處理奈米碳管之製作 39
2-5 物理表面改質奈米碳管的性質測試與試片製備 39
2-5.1 TGA 之測試 39
2-5.2 TEM試片製備 39
2-5.3 紫外光/可見光吸收光譜儀樣品的製備 39
2-5.4 粒徑分析 40
2-5.5 表面電位分析 40
2-6 太陽能電池的製作 40
2-6.1 染料溶液的製備 40
2-6.2 液態電解質的製備 40
2-6.3 多層奈米碳管-二氧化鈦複合鍍液的製備 40
2-6.4 光散射二氧化鈦鍍液的製備 41
2-6.5 多層奈米碳管-二氧化鈦工作電極的製備 41
2-6.6 白金對電極的製備 42
2-6.7 元件組合 43
2-7 多層奈米碳管-二氧化鈦的性質測試與試片製備 44
2-7.1 XRD試片製備 44
2-7.2 TEM試片製備 44
2-7.3 紫外光/可見光光譜儀樣品的製備 44
2-7.4 SEM試片製備 44
2-8 太陽能電池的光電化學測試 45
2-8.1 光電流-電壓特徵曲線 45
2-8.2 交流阻抗分析 45
2-8.3 IMVS與IMPS之量測 46
2-8.4 電壓衰退及電量分析實驗之量測 46
第三章 結果與討論 47
3-1 物理表面改質奈米碳管的性質鑑定 47
3-1.1 物理表面改質奈米碳管的分散外觀 47
3-1.2 物理表面改質奈米碳管的TEM鑑定 49
3-1.3 物理表面改質奈米碳管的TGA鑑定 53
3-1.4 物理表面改質奈米碳管的紫外光/可見光吸收鑑定 58
3-1.5 物理表面改質奈米碳管的表面電位分析 60
3-1.6 物理表面改質奈米碳管的粒徑分析 62
3-1.7 綜合討論 65
3-2 陰離子表面改質多層奈米碳管/二氧化鈦複材之鑑定 66
3-2.1 多層奈米碳管/二氧化鈦粉末X光繞射分析 66
3-2.2 多層奈米碳管/二氧化鈦粉末的TEM鑑定 72
3-2.3 多層奈米碳管/二氧化鈦薄膜的穿透度分析 74
3-2.4 多層奈米碳管/二氧化鈦薄膜的SEM分析 77
3-3 陰離子型表面改質多層奈米碳管/二氧化鈦工作電極應用於DSSC的元件表現 80
3-3.1 MWCNT/TiO2 工作電極的元件表現 80
3-3.1.1 光電轉換效率 80
3-3.1.2交流阻抗分析 86
3-3.1.3 IMPS/IMVS分析 96
3-3.1.4 電壓衰退及電量分析 101
3-3.1.5 綜合討論 106
3-3.2 MWCNT/TiO2工作電極引入光散射層的元件表現 107
3-3.2.1 光電轉換效率......................................................................108
3-3.2.2 交流阻抗分析......................................................................126
3-3.2.3 IMPS/IMVS分析.................................................................137
3-3.2.4 電壓衰退及電量分析..........................................................142
3-3.2.5綜合討論 ..............................................................................149
3-4 非離子型表面改質多層奈米碳管/二氧化鈦工作電極應用於DSSC的元件表現 148
3-4.1 MWCNT/TiO2及MWCNT/TiO2工作電極引入光散射層的元件表現......................................................................................................................148
3-4.1.1 光電轉換效率......................................................................148
3-4.1.2 綜合討論..............................................................................149
第四章 結論 154
第五章 參考文獻 156
附錄 167


[1] World in Transition - Towards Sustainable Energy Systems, German Advisory Council on Global Change, 2003, http://www.wbgu.de/wbgu_jg2003_kurz_engl.html
[2] 蔡松雨, 工業材料雜誌 2010;284:100
[3] 郭哲瑋、張仁銓、謝東坡、莊佳智、蔡松雨,工業材料雜誌 2010;284:101-109
[4] W. Hoffmann, "PV solar electricity industry: Market growth and perspective", Solar Energy Materials & Solar Cells 2006;90: 3285–3311
[5] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya , "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell", Nature 1976;261:402-403
[6] B. O’regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature 1991;353:737 – 740
[7] C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications", Journal of the American Ceramic Society 1997; 80:3157–3171
[8] 李佳樺, 工業材料雜誌 2011;292:94-99
[9] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", Journal of Photochemistry and Photobiology A: Chemistry 2004;164:3-14
[10] 王麗萍、蔡松雨,工業材料雜誌 2010;280:143-153
[11] M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells", Inorganic Chemistry 2005 ;44(20):6841-6851
[12] 蔡松雨,工業材料雜誌 2007,241:103-110
[13] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell", The Journal of Physical Chemistry B 2003;107:8981-8987.
[14] 張仕欣, 工業材料雜誌 2005,225:91-101
[15] S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S. Zakeeruddin, P. Pe´chy, M. Nazeeruddin, M. Grätzel, "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode", Chemical Communications 2006;38: 4004–4006
[16] 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震,科儀新知 2007;5(28):22-30
[17] 葉素敏,工業材料雜誌 2007;248:162-168
[18] 童永樑,工業材料雜誌 2008;255:109-123
[19] S.W. Rhee, W. Kwon, "Key technological elements in dye-sensitized solar cells (DSC)", Korean Journal of Chemical Engineering 2011;28: 1481-1494
[20] I.A. Courtney, J.R. Dahn, "Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites", Journal of The Electrochemical Society 1997;144(6):2045-2052
[21] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, ”High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer”, Chemical Communication 2009; 2198–2200
[22] 李佳樺,工業材料雜誌 2011;292:94-99
[23] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E. W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency", Science 2011;334:629-634
[24] 黃呈加,工業材料雜誌2002,192:96-101
[25] X. Chen, S.S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications", Chemical Reviews 2007; 107:2891-2959
[26] X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, F. Pedraza, "Local order in titania polymorphs", International Journal of Hydrogen Energy 2001;26:1279–1287
[27] D. Reyes-Coronado, G. Rodr´ıguez-Gattorno, M.E.-Pesqueira, C. Cab, R. de Coss1, G. Oskam, "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile", Nanotechnology 2008;19: 145605
[28]A.N. Banerjee, "The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures", Nanotechnology, Science and Applications 2011;4: 35–65
[29] M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.-F. Guillemoles, J.-P. Jolivet, "Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium", Thin Solid Films 2004; 451-452:86–92
[30 ] N.-G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A.J. Frank, "Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4", The Journal of Physical Chemistry B 1999;103:3308-3314
[31] K.-J. Jiang, T. Kitamura, H. Yin, Seigo Ito, S. Yanagida, "Dye-sensitized Solar Cells Using Brookite Nanoparticle TiO2 Films as Electrodes", Chemistry Letters 2002;31(9):872-873
[32] N.G. Park, J. van de Lagemaat, A.J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells", The Journal of Physical Chemistry B 2000; 104:8989-8994
[33] E.A. Barringer, H.K. Bowen, "High-Purity Monodisperse TiO2 Powders by Hydrolysis of Titanium Tetraethoxide. 2. Aqueous Interfacial Electrochemistry and Dispersion Stability," Langmuir 1895; 1:420–428
[34] J.H. Jean , T. A. Ring, "Nucleation and Growth of Monosized TiO2 Powders from Alcohol Solution", Langmuir 1986;2: 251–255.
[35] J.L. Look, C.F. Zukoski, "Alkoxide-Derived Titania Particles: Use of Electrolytes to Control Size and Agglomeration Levels", Journal of the American Ceramic Society 1992;75(6):1587–1595
[36] J.L. Look ,C.F. Zukoski, "Colloidal Stability of Titania Precipitate Morphology: Influence of Short-Range Repulsions", Journal of the American Ceramic Society 1995;78 (1):21-32
[37] V.J. Nagpal, R.M. Davis, J.S. Riffle, "In Situ Steric Stabilization of Titanium Dioxide Particles Synthesized by a Sol–Gel Process", Colloids and Surfaces 1994;87:25–31
[38] Q. Xu, M.J. Gieselmann, M.A. Anderson, "The Colloid Chemistry of Ceramic Membranes", Polymeric Materials: Science and Engineering 1989 ;61:889–893
[39] M.A. Anderson, M.J. Gieselmann, Q. Xu, "Titania and Alumina Ceramic Membranes", Journal of Membrane Science 1988; 39: 243–258
[40] C. Lijzenga, V.T. Zaspalis, K. Keizer, A.J. Burrgraaf, K.P. Kumar, C.D. Ransjin, "Nanostructure Characterization of Titania Membranes", Key Engineering Materials1991;61&62:379–382
[41] D. Vorkapic , T. Matsoukas, "Effect of Temperature and Alcohols in the Preparation of Titania Nanoparticles from Alkoxides", Journal of the American Ceramic Society 1998; 81(11):2815–2820
[42] G. Friesen, M.E. Ozsar, E.D. Dunlop, "Impedance model for CdTe solar cells exhibiting constant phase element behaviour" Thin Solid Films 2000;361-362:303-308
[43] G.P. Smestad, "Education and solar conversion: Demonstrating electron transfer", Solar Energy Materials and Solar Cells 1998;55:157-178
[44] 崔孟晉,工業材料雜誌 2008,257:185-193
[45] L.M. Goncalves , V. de Z. Bermudez , H.A. Ribeiro , A.M. Mendes, "Dye-sensitized solar cells: A safe bet for the future", Energy & Environmental Science 2008;1: 655-667
[46] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt,"Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells", Journal of the American Chemical Society 2010; 132:16714–16724
[47] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte", Chemical Communications 2002;2972-2973.
[48 ] N. Mohmeyer , D. Kuang, P. Wang, H.W. Schmidt, S. M. Zakeeruddin, M. Grätzel, "An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells", Journal of Materials Chemistry 2006;16:2978-2983.
[49] H. Matsui,K. Okada, T. Kawashima, T. Ezure, N. Tanabe, R. Kawano,M. Watanabe, "Application of an ionic liquid-based electrolyte to a 100 mm×100 mm sized dye-sensitized solar cell", Journal of Photochemistry and Photobiology A: Chemistry 2004;164:129-135.
[50] I. Chun, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, "All-solid-state dye-sensitized solar cells with high efficiency", Nature 2012;485:486-489
[51] L.M. Goncalves , V.Z. Bermudez , H.A. Ribeiro, A.M. Mendes, "Dye-sensitized solar cells: A safe bet for the future", Energy & Environmental Science 2008;1: 655-667
[52] T.N. Murakami , M. Gratzel, "Counter electrodes for DSC: Application of functional materials as catalysts", Inorganica Chimica Acta 2008; 361 :572–580
[53] J. Rostalski, D.Meissner, "Monochromatic versus solar efficiencies of organic solar cells", Solar energy materials and solar cells 2000;61:87-95.
[54] 陳頤承、郭昭顯、陳俊亨,工業材料雜誌;258:249-256
[55]http://www.wacom-ele.co.jp/products/solar/normal/
[56] B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, "Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces" The Journal of Physical Chemistry B 2001;105:1422-1429
[57] 文克剛, "可交聯光敏劑與雙成份離子溶液電解質在染敏太陽能電池光電性質之研究",台灣大學高分子科學與工程研究所 碩士論文2010
[58] N. Duffy, L.Peter, R. Rajapakse, K. Wijayantha, "Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells." The Journal of Physical Chemistry B 2000,104:8916-8919
[59] 林江珍、林嵩祚,中華民國石油季刊 2005;41(3):47-59
[60] 張文聖、黃建良,工業材料雜誌 2007;243:92-97
[61] P. C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Composites Part A: Applied Science and Manufacturing 2010;41:1345-1367
[62] D.S. Bethune, C.H. Klang, M.S. De Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature 1993;363:605–607.
[63] S Iijima, ”Helical microtubules of graphitic carbon”,Nature 1991; 354:56–58
[64] 李嘉甄,工業材料 2007,243:98-104
[65] S.W. Kim, T. Kim, Y.S. Kim, H.S. Choi, H.J. Lim, S.J. Yang, C. R. Park, "Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers", Carbon 2011;50:3-33
[66] K.F. Kelly, I.W. Chiang, E.T. Mickelson, R.H. Hauge, J.L. Margrave, X. Wang, G.E. Scuseria, C. Radloff, N.J. Halas, "Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study", Chemical Physics Letters 1999;313:445-450
[67] P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Composites Part A: Applied Science and Manufacturing 2010;41:1345-1367
[68] B. McCarthy, J.N. Coleman, R. Czerw, A.B. Dalton, D.L. Carroll and W.J. Blau, "Microscopy studies of nanotube-conjugated polymer interactions", Synthetic Metals 2001;121:1225–1226
[69] D.E. Hill, Y. Lin, A.M. Rao, L.F. Allard, Y.P. Sun, "Functionalization of carbon nanotubes with polystyrene", Macromolecules 2002;35:9466–9471
[70] M. Giulianini, E.R. Waclawik, J.M. Bell, M.D. Crescenzi, P. Castrucci, M. Scarselli, N. Motta, "Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes", Applied Physics Letters 2009;95: 013304/1-3
[71] M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, "High weight fraction surfactant solubilization of single-wall carbon nanotubes in water", Nano Letters 2003;3:269–273
[72] P. Brown, K. Takechi, P.V. Kamat, "Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C 2008; 112:4776-4782
[73] T.Y. Lee , P.S. Alegaonkar, J.B. Yoo, "Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes" Thin Solid Films 2007;515:5131-5135
[74] A. Kongkanand, R.M. Domı´nguez, P.V. Kamat, "Single Wall Carbon Nanotube Scaffoldsfor Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons" Nano Letters 2007;7:676-680
[75 ] X. Dang, H. Yi, M.H. Ham, J. Qi, D.S. Yun, R. Ladewski, M.S. Strano, P.T. Hammond, A.M. Belcher, "Virus-Templated Self-Assembled Single-Walled Carbon Nanotubes for Highly Efficient Electron Collection in Photovoltaic Devices," Nature Nanotechnology 2011;6:377-384
[76] R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, " Stabilization of Individual Carbon Nanotubes in Aqueous Solutions", Nano Latters 2002;2:25-28
[77] S. Stankovic, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, "Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate)", The Journal of Physical Chemistry 2006;16:155–158
[78] L. Groenendaal, F. Jonas, D. Freitag,H Pielartzik, J. R. Reynolds, "Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future", Advanced Materials 2000;12:481–494
[79] J. Han, H. Kim, D.Y. Kim, S.M. Jo, S.Y. Jang, "Water-Soluble Polyelectrolyte-Grafted Multiwalled Carbon Nanotube Thin Films for Efficient Counter Electrode of Dye-Sensitized Solar Cells", American Chemical Society Nano 2010;4(6):3503–3509
[80] 鄭玉慧, "NaPSS 聚電解質溶液行為之探討" 國立臺灣大學材料科學與工程
學研究所 碩士論文 1999
[81] H. Vin, "A new convenient method for the synthesis of poly(styrenesulfonic acid)", Makromolekulare Chemie 1981;182:279-281
[82] L. Vaisman, G. Marom, H.D. Wagner, "Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers", Advanced Functional Materials 2006;16:357–363
[83] G.K.C. Lee, C. Sach, M.L.H. Green, L. Wong, G.C. Salzmann, "Mixtures of oppositely charged polypeptides as high-performance dispersing agents for single-wall carbon nanotubes", Chemical Communications 2010; 46:7013–7015
[84] J. Lin, H.W. Gao, "SDBS@BaSO4: an efficient wastewater-sorbing material", Journal of Materials Chemistry 2009; 19: 3598–3601
[85] D.D. Jiang, Q. Yao, M.A. McKinney, C.A. Wilkie, "TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts", Polymer Degradation and Stability 1999;63:423-434
[86] A.D. Crescenzo, D. Demurtas, A. Renzetti, G. Siani, P.D. Maria, M. Meneghetti, M. Prato,, A.Fontana, "Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1-hexadecyl-3-vinyl-imidazolium bromide in aqueous solution", Soft Matter 2009;5:62-66
[87] Z.F. Li, G.H. Luo, W.P. Zhou, F. Wei, R. Xiang, Y.P. Liu, "The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry", Nanotechnology 2006;17:3692
[88] B. White, S. Banerjee, S. O''Brien, N. J. Turro, I.P. Herman, "Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes", Journal of Physical Chemistry C 2007;111 (37):13684–13690
[89] L. Zhao, L. Gao, "Stability of multi-walled carbon nanotubes dispersion with copolymer in ethanol", Colloids and Surfaces A 2003;224:127-134
[90] L. Jiang, L. Gao, J. Sun, "Production of aqueous colloidal dispersions of carbon nanotubes", Journal of Colloid and Interface Science 2003;260:89-94
[91] L. Vaisman, G. Marom, H. Daniel Wagner, "Dispersions of Surface-Modified Carbon Nanotubes", Advanced Functional Materials 2006;16:357-363
[92] P.C. Hiemenz, , R. Rajagopalan, Principles of Colloid and Surface Chemistry 3rd ed. 1997; Marcel Dekker: New York
[93] C.Y. Yen, Y. F. Lin, S.H. Liao, C.C. Weng, C.C. Huang, Y.H. Hsiao, C.C.M. Ma, M.C. Chang, H. Shao, M.C. Tsai, C.K. Hsieh, , C.H. Tsai, F.B. Weng, "Preparation and Properties of a Carbon Nanotube-Based Nanocomposite Photoanode for Dye-Sensitized Solar Cells", Nanotechnology 2008;19: 375305
[94] Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che , J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, "Enhancement of photocatalytic activity of mesoporous TiO2",Applied Catalysis A 2005;289:186-196
[95] W. Wang, P. Serp, P. Kalck, J.L. Faria, "Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method", Applied Catalysis B: Environmental 2005;56:305-312
[96] C. Perego, Y.H. Wang, O. Durupthy, S. Cassaignon, R. Revel, J.P. Jolivet, "Nanocrystalline Brookite with Enhanced Stability and Photocatalytic Activity: Influence of Lanthanum(III) Doping ", ACS Applied Materials & Interfaces 2012; 4: 752−760
[97] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, S. Tanemura, "Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering", Applied Surface Science 2003;212–213:255–263
[98] D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, "On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films",Applied Surface Science 2000;156 :200–206
[99] A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy, "Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites", Carbon 2004;42:1147–1151
[100] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, " Influence of scattering layers on efficiency of dye-sensitized solar cells", Solar Energy Materials & Solar Cells 2006;90:1176–1188
[101] 劉耕硯,"可交聯型釕金屬錯合物在染敏化太陽能電池上的合成與應用",台灣大學材料科學與工程研究所 博士論文 2011
[102] 柯志揚," 可交聯型釕金屬錯合物與其交聯劑在染料敏化太陽能電池之應用",台灣大學高分子科學與工程研究所 碩士論文2010
[103] 曾俊華," 含不同羧基數釕金屬錯合物染料之性質及光伏效能研究",台灣大學材料科學與工程研究所 碩士論文 2011


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊