|
[1]J. Akram, Z. Shi, M. Mumtaz, and P. Luo, “DroidCC: A Scalable Clone Detection Approach for Android Applications to Detect Similarity at Source Code Level,” 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 100-105, 2018. [2]M. S. Alam and S. T. Vuong, “Random Forest Classification for Detecting Android Malware,” 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 663-669, 2013. [3]T. Cho, H. Kim, and J. H. Yi, “Security Assessment of Code Obfuscation Based on Dynamic Monitoring in Android Things,” IEEE Access, Vol. 5, pp. 6361-6371, 2017. [4]Z. Fang, W. Han, and Y. Li, “Permission based Android security: Issues and countermeasures,” Computers & Security, Vol. 43, pp. 205-218, 2014. [5]A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in mobile malware detection,” Digital Investigation, Vol. 13, pp. 22-37, 2015. [6]J. Jung, H. Kim, D. Shin, M. Lee, H. Lee, S. Cho, and K. Suhet , “Android Malware Detection Based on Useful API Calls and Machine Learning,” 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 175-178 , 2018. [7]E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic framework for android malware detection using deep learning,” Digital Investigation, Vol. 24, pp. S48-S59, 2018. [8]J. Lee, S. Lee, and H. Lee, “Screening smartphone applications using malware family signatures,” Computers & Security, Vol. 52, pp. 234-249, 2015. [9]J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant Permission Identification for Machine-Learning-Based Android Malware Detection,” IEEE Transactions on Industrial Informatics, Vol. 14, No. 7, pp. 3216-3225, 2018. [10]L. Li, T. F. Bissyandé, Y. L. Traon, and J. Klein, “Accessing Inaccessible Android APIs: An Empirical Study,” 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 411-422, 2016 [11]J. Milosevic, M. Malek, and A. Ferrante, “Time, accuracy and power consumption tradeoff in mobile malware detection systems,” Computers & Security, Vol. 82, pp. 314-328, 2019. [12]N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning aided Android malware classification,” Computers & Electrical Engineering, Vol. 61, pp. 266-274, 2017. [13]V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns for contrasting clean and malicious android applications,” Future Generation Computer Systems, Vol. 36, pp. 122-132, 2014. [14]M. Nezhadkamali, S. Soltani, and S. A. H. Seno, “Android malware detection based on overlapping of static features,” 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE), 2017, pp. 319-325. [15]V. P, A. Zemmari, and M. Conti, “A machine learning based approach to detect malicious android apps using discriminant system calls,” Future Generation Computer Systems, Vol. 94, pp. 333-350, 2019. [16]P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola, and J. Karhunen, “A pragmatic android malware detection procedure,” Computers & Security, Vol. 70, pp. 689-701, 2017. [17]D. Ö. Şahın, O. E. Kural, S. Akleylek, and E. Kiliç, “New results on permission based static analysis for Android malware,” 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1-4, 2018. [18]A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and Efficient Behavior-based Android Malware Detection and Prevention,” IEEE Transactions on Dependable and Secure Computing, Vol. 15, No. 1, pp. 83-97, 2018. [19]G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “MalPat: Mining Patterns of Malicious and Benign Android Apps via Permission-Related APIs,” IEEE Transactions on Reliability, Vol. 67, No. 1, pp. 355-369, 2018. [20]S. Y. Yerima and S. Sezer, “DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection,” IEEE Transactions on Cybernetics, Vol. 49, No. 2, pp. 453-466, 2019. [21]S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android malware detection using ensemble learning,” IET Information Security, Vol. 9, No. 6, pp. 313-320, 2015. [22]Mobile Malware Report - no let-up with Android malware:https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware [23]R语言︱决策树族——随机森林算法: https://blog.csdn.net/sinat_26917383/article/details/51308061 [24]如何辨別機器學習模型的好壞?秒懂Confusion Matrix:https://www.ycc.idv.tw/confusion-matrix.html [25]惡意APK資料集:https://virusshare.com/ [26]良性APK資料集:https://archive.org/details/playdrone-apks [27]SVM介紹:https://rpubs.com/skydome20/R-Note14-SVM-SVR [28]Permissions overview:https://developer.android.com/guide/topics/permissions/overview
|