跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴志偉
研究生(外文):Chi-Wei Lai
論文名稱:運用資料包絡法建構具非穩態需求情境下之產品組合訂定機制—以晶圓廠為例
論文名稱(外文):The Construction of Product Mix Setting Mechanism for the Wafer Fabrication under a Non-Steady State Environment with Data Envelopment Analysis
指導教授:鍾淑馨鍾淑馨引用關係陳文智陳文智引用關係
指導教授(外文):Shu-Hsing ChungWen-Chih Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:122
中文關鍵詞:晶圓製造廠產品組合訂定資料包絡分析法
外文關鍵詞:SemiconductorProduct mix settingDEA
相關次數:
  • 被引用被引用:3
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:1
現今晶圓市場競爭激烈,如何訂定產品組合(Product Mix Setting)是晶圓製造廠是否具有競爭力的重要議題,好的產品組合能使晶圓廠之生產系統績效良好,同時亦能提高獲利能力。本研究提出一個運用資料包絡法的二階段產品組合訂定評估機制,以作為公司在營運時之中長期生產規劃決策之依據。此二階段產品組合訂定機制所提供的產品別區間組合表,可使接單決策者明瞭接單後所形成之產品組合對整體生產系統之績效,以作為其判斷接單與否之依據。同時此組合表的訂定考量各種績效指標以及需求的環境變動;能檢查所有可能的產品組合,並同時兼顧計算效率,所以其建議確實可以輔助訂定出能兼顧獲利能力產能且維持生產績效之平穩度的產品組合,以提升公司之競爭力
Under a very competitive market nowadays, the product mix setting is one of critical issues for Wafer fabrication factories towards success. This study presents a two-stage framework for product mix setting utilizing the concepts of data envelopment analysis (DEA) and Malmquist productivity index. This framework not only considers all aspects of the performance criteria for factories and the variation of the market environment, but also examines all possibilities of product mix. Therefore, the provided suggestion is inclusive. In addition, it is computational efficient and can provide useful information for decision makers effectively.
摘要.............................................. i
Abstract ........................................ ii
誌謝............................................. iii
目錄............................................. iv
圖目錄............................................ vii
表目錄............................................ viii
符號一覽表....................................... x
第一章 緒論...................................... 1
第二章 文獻探討.................................. 3
2.1 半導體廠之績效指標............................3
2.2 產品組合決策方法............................. 4
2.2.1 限制理論產品別組合啟發式法則(TOC Product Mix Heuristic)
....... 4
2.2.2 數學規劃之方法.............................. 5
2.2.3 類神經網路之方法............................ 8
2.2.4 資料包絡法.................................. 8
2.2.5 文獻整理.................................... 9
第三章 資料包絡法相關研究..........................11
3.1 生產可能集合(Production Possibility Set)及距離函數與資料包絡
法基本模式.........................................11
3.2 無效率資料包絡法.............................. 13
3.3 Malmquist 生產力指標.......................... 13
第四章 區間資料之績效評估......................... 16
4.1 區間資料之資料包絡法.......................... 16
4.2 有關區間資料包絡法之圖例說明.................. 18
4.3 Interval-Malmquist Production Index .......... 20
4.3.1 先前研究.................................... 20
4.3.2 Interval-Malmquist Productivity Index (IMPI) ...... 21
4.4 Interval-Inefficiency Data Envelopment Analysis ..... 24
第五章 產品組合決策模組........................... 26
5.1 問題分析與定義................................ 26
5.2 整體邏輯與架構................................ 27
5.3 產品族/優先權組合模組......................... 29
5.3.1 產品族/優先權組合設計階段................... 31
5.3.1.1 產品族組合設計............................ 32
5.3.1.2 訂單優先權等級區間比例組合設計............ 32
5.3.1.3 產品族/優先權組合配對..................... 35
5.3.2 產品族/優先權組合限制篩選................... 35
5.3.2.1 產品族/優先權組合產能限制篩選............. 36
5.3.2.2 產品族/優先權組合利潤限制篩選............. 38
5.3.3 產品族/優先權組合績效評估................... 42
5.4 產品別區間組合模組............................ 45
5.4.1 產品別區間組合設計.......................... 47
5.4.2 產品別區間組合篩選.......................... 49
5.4.2.1 產品別區間組合產能限制篩選................ 49
5.4.2.2 產品別區間組合利潤限制篩選................ 51
5.4.3 產品別區間組合評估.......................... 56
5.4.3.1 無效率產品別區間組合篩選.................. 56
5.4.3.2 產品別區間組合表績效排序.................. 57
第六章 實例說明................................... 58
6.1 系統環境說明.................................. 58
6.1.1 生產環境說明................................ 58
6.1.2 產品族模組與產品別模組規劃設定.............. 59
6.1.3 生產排程規劃設定............................ 60
6.1.4 產能與成本相關假設.......................... 61
6.1.5 資料包絡法相關績效指標訂定.................. 62
6.2 產品族/優先權組合模組進行過程................. 62
6.2.1 產品族/優先權組合配對階段................... 63
6.2.1.1 產品族組合設計............................ 63
6.2.1.2 訂單優先權等級比例組合設計................ 63
6.2.1.3 產品族/優先權組合配對..................... 66
6.2.2 產品族/優先權組合篩選階段................... 66
6.2.2.1 產品族/優先權組合限制篩選................. 66
6.2.2.2 產品族/優先權組合利潤限制篩選............. 68
6.2.3 產品族/優先權組合績效衡量階段............... 73
6.2.3.1 模擬模式之執行............................ 73
6.2.3.2 產品族/優先權組合績效評估................. 74
6.3 產品別區間組合模組............................ 76
6.3.1 產品別區間組合設計階段...................... 76
6.3.2 產品別區間組合篩選階段...................... 80
6.3.2.1 產品別區間組合產能限制篩選................ 80
6.3.2.2 產品別區間組合利潤限制篩選................ 81
6.3.3 產品族/優先權組合績效衡量階段............... 84
6.3.3.1 模擬模式之執行............................ 84
6.3.3.2 無效率產品別區間組合篩選...................85
6.3.3.3 產品別區間組合表績效排序.................. 85
6.4 接單之產品別區間組合表之使用說明.............. 87
第七章 結論與未來研究方向......................... 89
7.1 結論.......................................... 89
7.2 未來研究方向.................................. 89
參考文獻.......................................... 91
附錄A 產品別製程資料.............................. 97
附錄B 工作站相關資料.............................. 102
附錄C 產品族/優先權組合........................... 104
附錄D 產能篩選後之產品族/優先權組合................110
附錄E 產能篩選後之產品族/優先權組合之定價關鍵資源分攤運轉成
本(計畫產出利用率95%).........113
附錄F 產品族/優先權組合之模擬之績效指標數據........118
參考文獻
[1]Ball, E., Färe, R., Grosskopf, S. and Zaim, O., 2005, “Accounting for externalities in the measurement of productivity groth the Malmquist cost productivity measure,” Structural Change and Economic Dynamics, Vol.16, 374-394.
[2]Banker, R. D., Charnes, A. and Cooper, W. W., 1984, “Some models for estimating technical and scale inefficiency in data envelopment analysis,” Management Science, Vol. 30(9), 1078-1092.
[3]Barros, C. P. and Alves, C., 2004, “An empirical analysis of productivity growth in a portuguese retail chain using Malmquist productivity index,” Journal of Retailing and Consumer Services, Vol. 11, 269-278.
[4]Buxey, G., 1989, “Production scheduling: practice and theory,” European Journal of Operation Research, Vol. 39, 17-31.
[5]Caves, D. W., Christensen, L. R. and Diewert, W. E., 1982, “The economic theory of index numbers and the measurement of input, output and productivity,” Econometrica, Vol 50, 1393-1414.
[6]Chen, Y. and Ali, A. I., 2004, “DEA Malmquist productivity measure new insights with an application to computer industry,” European Journal of Operational Research, Vol. 159, pp. 239-249.
[7]Chen, Y., 2003, “A non-radial Malmquist productivity index with an illustrative application to chinese major industries,”International Journal of Production Economics, Vol. 83, 27-35.
[8]Chou, Y. C. and Hong, I. H., 2000, “A methodology for product mix planning in semiconductor foundry manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol. 13(3), 278-285.
[9]Chung, S. H. and Huang, H. W., “Cycle time estimation for wafer fab with engineering lots,” IIE Transaction on Scheduling and Logistics, to appear.
[10]Chung, S. H., Lee, H. I., and Peam, W. L., 2005, “Analytic network process (ANP) approach for product mix planning in semiconductor fabricator,” International Journal of Production Economics, Vol. 96, 15-36.
[11]Chung, S. H., and Lee, H. I., Lai, C. W., and Tseng, W. X., 2005, “A DEA window analysis on the product family mix selection for a semiconductor fabricator,” Working Paper.
[12]Chung, S. H., Yang, M. H. and Cheng, C. M., “The design of due-date assignment model and the determination of flow time control parameters for the wafer fabrication factories,” IEEE Transaction on Components, Packaging, and Manufacturing Technology, Vol. 20(4), 278-287, 1997.
[13]Charnes, A., Cooper, W. W. and Rhodes, W., 1978, “Measuring the efficiency of decision making units,” European Journal of Operational Research, Vol. 2, 429-444.
[14]Cooper, W. W., Park, K. S., and Yu, G., 1999, “IDEA and AR-IDEA for dealing with imprecise data in DEA,” Management Science, Vol. 45(4), 597-607.
[15]Despotis, D. K., Smirlis Y. G., 2002, “Data envelopment analysis with imprecise data,” European Journal of Operational Research, Vol. 140, 24–36.
[16]Dettmer, H. W., 1998, “Breaking the constraints to world-class performance,” Milwukee, MI: ASQ Quality Press.
[17]Entani, T., Maeda, Y., and Tanaka, H., 2002, “Dual models of interval DEA and its extension to interval data,” European Journal of Operational Research, Vol. 136, 32-45.
[18]Estache, A., de la Fé, B. T. and Trujillo, L., 2004, “Sources of efficiency gains in port reform a DEA decomposition of a Malmquist TFP index for Mexico,” Utilities Policy, Vol. 12, 221-230.
[19]Färe, R., Grosskopf, S., Lindgren, B. and Roos, P., “Productivity changes in swedish pharmacies 1980-1989: A non-parametric Malmquist approach,” Journal of Productivity Analysis, Vol. 3, 85-101, 1992.
[20]Färe, R., Grosskopf, S., and Lovell, CAK., 1994, “Production frontiers,” Cambridge University Press, P. 232.
[21]Farrell, M. J., 1957, “The measurement of productive efficiency,” Journal of the Royal Statistical Society, Series A, General, Vol. 120(3), 253-281.
[22]Fredendall, L. D. and Lea, B. R. 1997, “improving the product mix heuristic in the theory of constraints,” International Journal of Production Research, Vol. 35(6), 1535-1544.
[23]Goldratt, E. M., 1990, “The haystack syndrome: sifting information from the data ocean,” Croton-on-Hudson, Great Barrington, MA: North River Press.
[24]Goldratt, E. M., 1990, “What is this called the theory of constraints and how should it be implemented?” Croton-on-Hudson, Great Barrington, MA: North River Press.
[25]Haghighat, M. S., and Khorram, E., 2005, “The maximum and minimum number of efficient units in DEA with interval data,” Applied Mathematics and Computation, Vol. 163, 919 – 930.
[26]Hseu, J. S. and Shang, J. K., 2005, “Productivity changes of pulp and paper industry in OECD countries, 1991-2000 a non-parametric Malmquist approach,” Forest Policy and Economics, Vol. 7, 411-422.
[27]Hung, Y. F. and Leachman, R. C., “A production planning methodology for semiconductor manufacturing based on interactive simulation and linear programming calculations,” IEEE Transactions on Semiconductor Manufacturing, Vol. 9(2), 257-269, 1996.
[28]Jahanshahloo, G. R., Hosseinzadeh Lofti, F., and Bagherzadeh Valami, H., 2006, ”Malmquist Productivity Index with interval and fuzzy data,” International Mathematical Forum, Vol. 33, 1607-1623.
[29]Jahanshahloo, G. R., Hosseinzadeh Lofti, F., and Moradi, M., 2004, “Sensitivity and stability analysis in DEA with interval data,” Applied Methoematics and Computation, Vol. 156, 463-477.
[30]Jahanshahloo, G. R., Matin, R. K., and Vencheh, A. H., 2004, “On return to scale of fully efficient DMUs in data envelopment analysis under interval data,” Vol. 154, 31-40.
[31]Kao, C. and Liu, S. T., 2000, “Fuzzy efficiency measures in Data envelopment analysis,” Fuzzy Sets and Systems, Vol. 113, 427-437.
[32]Kasilingam, R.G., 1995, “Product mix determination in the presence of alternate process plans and stochastic demand,” Computers Industry Engineering, Vol. 29(1), 249-253.
[33]Kim, S. H., Park, C. G., and Park, K. S., 1999, “An application of data envelopment analysis in telephone offices evaluation with partial data. Computers & Operation Research, Vol. 26, 59-72.
[34]Kuroda, M. and Kawada, A., 1995, “Adaptive input control for job-shop type production systems with varying demands using inverse queuing network analysis,” International Journal of Production Economics, Vol. 41, 217-255.
[35]Lee, T. N. and Plenert ,G.., 1993, “Optimizing theory of constraints when new product alternatives exist,” Production and Inventory Management Journal, Vol. 34(3), 51-57.
[36]Lozano-Vivas, A. and Humphrey, D. B., 2002, “Bias in Malmquist index and cost function productivity measurement in banking,” International Journal of Production Economics, Vol. 76, 177-188.
[37]Malmquist, S., 1953, “Index numbers and indifference surfaces,” Trabajos de Estatistica, Vol. 4, 209-242.
[38]Maniadakis, N. and Thanassoulis, E., 2004, “A cost Malmquist productivity index,” European Journal of Operational Research, Vol. 154, 396-409.
[39]Odeck, J., 2005, “Identifying traffic safety best practice an application of DEA and Malmquist indices,” OMEGA: the International Journal of Management Service, Vol. 34, 28-40.
[40]Plenert, G., 1993, “Optimized theory of constraints when multiple constrained resources exist,” European Journal of Operational Research, Vol. 70, 126-133.
[41]Posnack, A. J., 1994, “Theory of constraints: improper applications yield improper conclusions,” Production and Inventory Management Journal, Vol. 35(1), 85-86.
[42]Shephard, R. W., 1970, “Theory of Cost and Production Functions”, Princeton University Press, Princeton, NJ.
[43]Sueyoshi, T. and Aoki, S., 2001, “A use of a nonparametric statistic for DEA frontier shift: The Kruskal and Wallis rank test,” OMEGA: International Journal of Management Science, Vol. 29, 1-18.
[44]Sueyoshi, T. and Goto, M. S., 2001, “Slack-adjusted DEA for time series analysis: performance measurement of Japanese electric power generation industry in 1984-1993,” European Journal of Operation Research, Vol 133, 232-259.
[45]Teskouras, K. D., Pantzios, C. J. and Karagiannis, G., 2004, “Malmquist productivity index estimation with zero-value variable: The case of Greek prefectural training councils,” International Journal of Production Economics, Vol. 89, 95-106.
[46]Wang, Y. M., Greatbanks, R.,and Yang, J. B. 2005, “Interval efficiency assessument using data envelopment analysis,” Fuzzy sets and systems, Vol. 153, 347-370.
[47]Witte, J. D., 1996, “Using static capacity modeling techniques in semiconductor manufacturing,” IEEE/SEMI Advantaged Semiconductor Manufacturing Conference, FL 32907, 31-35.
[48]Yamada, Y., Matui, T., and Sugiyama, M., 1993, ”New analysis of efficiency based on DEA,” Journal of the Operations Research Society of Janpan, Vol. 37(2), 158-167(in Janpaness).
[49]Yamada, Y., Sugiyama, T., and Sugiyama, M., 1995, ”The DEA method for Janpanese management: the evaluation of local governmental investments to the Janpanese economy,” Journal of the Operations Research Society of Janpan, Vol. 38(4), 381-397(in Janpaness).
[50]Yoruk, B. K. and Zaim, O., 2005 “Productivity growth in DECD countries A comparison with Malmquist indices,” Journal of Comparative Economics, Vol. 33, 401-420.
[51]Zhu, J., 2003, “Imprecise data envelopment analysis (IDEA): a review and improvement with an application,” European Journal of Operation Research, Vol. 144, 513-529.
[52]李國禎,「晶圓製造廠生產規劃模式之構建」,國立交通大學工業工程與管理學系,碩士論文,民國84年。
[53]李幸娥,「晶圓製造廠非穏態環境下之生產排程規劃」,國立交通大學工業工程與管理學系,碩士論文,民國91年。
[54]李欣怡,「晶圓製造廠產品組合最佳化之設定」,國立交通大學工業工程與管理學系,博士論文,民國93年。
[55]洪建國,「運用負荷導向理念構建晶圓製造廠之細部生產排程規劃模式」,國立交通大學工業工程與管理學系,碩士論文,民國85年。
[56]梁勝銓,「晶圓製造廠產品組合與機器利用率模式之構建」,國立交通大學工業工程與管理學系,碩士論文,民國87年。
[57]張毓誠,「晶圓製造廠主生產排程之構建」,國立交通大學工業工程與管理學系,碩士論文,民國86年。
[58]馮堯欽,「晶圓製造廠產品組合、機器利用率與系統平均在製品存貨水準模式之構建-考慮隨機模式」,國立交通大學工業工程與管理學系,碩士論文,民國87年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top