跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昭成
研究生(外文):Jau-Chen Lin
論文名稱:前列腺癌抗藥性相關基因分子作用機轉之研究
論文名稱(外文):Study of the molecular mechanisms of drug resistance related genes Id-1, MIF and GSTpi in prostate cancer
指導教授:張聖原張聖原引用關係于大雄于大雄引用關係
指導教授(外文):Sun-Yran ChangDah-Shyong Yu
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:160
中文關鍵詞:前列腺癌多重抗藥性巨嗜細胞驅化抑制因子榖胱甘硫轉移酶抑制分化因子
外文關鍵詞:prostate cancermultidrug resistanceMIFGSTpiId-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
前列腺癌是美國男性最常見的癌症,也是繼肺癌之後造成癌症死亡的第二位主因。前列腺癌在台灣的發生率也是逐年不斷地增加,已成為成男性癌症死亡的第七位。侵犯與轉移仍然是決定治療前列腺癌患者成功與否的最大阻礙。化學治療在生殖泌尿腫瘤之應用,一般為腫瘤出現無法手術、復發或轉移時。而當賀爾蒙治療無效時,前列腺癌往往變成具有抗藥性。因此,研究因賀爾蒙治療無效引發其產生抗藥性的分子機轉,進一步從中找到新的有效替代療法,改善目前前列腺癌的治療。
我們實驗室發展出基因矩陣(cDNA microarray)的技術來篩選參與前列腺癌抗藥性形成的可能基因,並藉此找到有效的臨床治療新標的基因。在比對大鼠前列腺癌抗藥性子細胞株(AT3/ADR1000)與母細胞株的實驗中發現,有數種基因高度表達在抗藥性子細胞株中,我們將焦點放在巨嗜細胞驅化抑制因子(macrophage migration inhibitory factor; MIF),榖胱甘硫轉移酶(glutathione S-transferase pi; GSTpi),抑制分化因子(Inhibition of Differentiation-1; Id-1)等基因,因為根據文獻報導此三個基因與腫瘤發生和轉移有相關性。
首先,為了要確定這些基因與前列腺後天抗藥性產生的相關性,我們利用基因的轉染建立了分別大量表達Id-1,MIF和GSTpi的細胞株,並測試這些轉染細胞株對於不同的化療藥物如doxorubicin,paclitaxel和cyclophosphamide的細胞毒性的變化。細胞毒性試驗結果顯示,大量表達Id-1的細胞株增加對doxorubicin,paclitaxel和cyclophosphamide化療藥物的抗藥性, MIF的表現可驅使細胞增加對paclitaxel的抗藥性,GSTpi的表達可提供對doxorubicin和cyclophosphamide的抗藥性。此外,MIF和GSTpi的表達會引發多重抗藥基因multi-drug resistant gene-1 (mdr-1)的表達。
為了進一步研究前列腺癌細胞多重抗藥性細胞株MIF以及GSTpi與mdr-1基因表達的相關性,我們利用經過基因轉染的細胞株來探討mdr-1基因表達是否會因MIF或GSTpi的表達而改變,而因MIF或GSTpi表達所造成醣化蛋白-170的過度產生是否為可提供泌尿道癌細胞抗藥性的機轉。結果顯示,前列腺癌細胞多重抗藥性細胞株中的醣化蛋白-170產量與MIF及GSTpi蛋白質量都明顯增加。而不管在MIF或GSTpi 的永久性轉染細胞株中,其多重抗藥基因的表達與醣化蛋白-170的產生都明顯高於控制組。進一步利用HEK細胞株暫時性轉染MIF或GSTpi基因觀察醣化蛋白-170的變化,細胞流式分析結果顯示醣化蛋白-170的表達隨著基因轉染的劑量增加而增加。而細胞敏感性試驗顯示隨著醣化蛋白-170的增加細胞的存活率亦隨之增加。
為了探討Id-1在前列腺癌提供抗藥性機轉的研究,我們利Id-1的永久性轉染的細胞株研究Id-1表達及下游訊息傳遞對前列腺癌多重抗藥性產生的影響。我們發現Id-1的過度產生可驅使AT3細胞對doxorubicin,paclitaxel 和cyclophosphamide產生抗藥性,但此抗藥性並非引發多重抗藥性基因的表達。在doxorubicin 的處理下,細胞會因Id-1的表達而抑制p38MAPK 和c-jun N-terminal kinase (JNK) 訊息的傳遞。以p38MAPK and JNK 抑制劑處理Id-1的永久性轉染的細胞株會降低doxorubicin引發的細胞凋亡. 相對的, 以extracellular signal-regulated kinase (ERK) 抑制劑處理Id-1的永久性轉染的細胞株會使得細胞對藥物引發的凋亡更為敏感。總結,Id-1的過度表達是藉由抑制p38MAPK and JNK 訊息傳遞而影響前列腺癌的抗藥性。此外,持續的活化ERK可提供細胞的對抗藥物引發的細胞毒性。
總結,我們的數據提供了幾個重要的訊息: 1)利用多重抗藥細胞模式結合cDNA microarray方法,我們成功的篩選到三個大量表現在多重抗藥細胞株的重要基因,而此基因的過度表達提供前列腺癌的抗藥性;2)雖然過度表達MIF 和GSTpi基因會引發多重抗藥基因的表達,但它們無法提供所有的前列腺癌多重抗藥細胞的抗藥表現型態的特性,那意味著有其他的機轉提供前列腺癌的抗藥特性;3) Id-1, MIF和 GSTpi可能不只因引發多重抗藥基因的表達並且藉由其個別的生物功能;4) 細胞過度表達Id-1可使ERK 持續的活化,且伴隨JNK和p38MAPK的抑制,導致細胞對藥物引發的凋亡更具有抗藥性。無論如何,這些基因的交互作用與前列腺癌抗藥性的獲得將在未來的動物實驗中做進一步的研究。
Prostate carcinoma is the most common malignancy in males and is the second leading cause of cancer mortality in the United States after lung cancer. Now prostate cancer occurrence increased recently in Taiwan and became the seventh leading cause of cancer mortality. Invasion and metastasis is still the greatest obstacles to the successful treatment of patients with prostate cancer. Chemotherapy is the choice of therapy for genital urinary tract cancer, when they were unresectable, recurrent or metastasis. But prostate cancer always possesses drug-resistance in this situation after hormonal therapy is of no use. Therefore, the molecular mechanisms of drug-resistance derived from hormone refractory should be investigated to find out a new target of effective alternative therapy for the treatment of prostate cancer.
Our laboratory has developed cDNA microarrays to screen the potential genes that involve the development of drug resistance of prostate cancer and try to find a new efficient therapy target for clinic treatment. There are several genes up-regulated in multidrug resistance cell line of rat prostate cancer when compared with native cells. We narrowed to three highly potential genes including macrophage migration inhibitory factor (MIF), glutathione S-transferases (GSTs), and Inhibition of Differentiation-1 (Id-1) because they are reported to associated with tumorgenesis or metastasis.
At first, we identified the relationship between these genes and acquired drug resistance of prostate cancer, we established the prostate cancer transfectants that overexpressed Id-1, MIF and GSTpi, respectively, and tested the inhibitory effect of the cytotoxicity to different chemotherpeutic agents such as doxorubicin, paclitaxel and cyclophosphamide. The cytotoxity assay results demonstrated that cells overexpressing the Id-1 gene can increase in their resistance to doxorubicin, paclitaxel and cyclophosphamide. MIF expression can drive cells increase in their resistance to paclitaxel, and GSTpi expression confers drug resistance to doxorubicin and cyclophosphamide. In addition, the induction of mdr1 gene expression was noted in upregulation of MIF and GSTpi.
To further investigate the relationship between MIF as well as GSTpi and the expression of mdr-1 gene in MDR subline of prostate cancer cells, we used these stable transfectants to determine whether the expression of mdr-1 should be modulated by MIF or GSTpi expression and whether the overproduction of p-glycoprotein driving by MIF or GSTpi confers the resistance to prostate cancer cells. The results showed that the production of gp-170 increased in MDR sublines of prostate cancer accompanying the upregulation of MIF and GSTpi in protein level. The expression of mdr-1 gene and the production of pg-170 increased in either MIF or GSTpi stable transfectants when compared with vector control. The human embryonic kidney (HEK) cells transiently transfected with the eukarytonic expression vector driving MIF or GSTpi protein presented the increased production of gp-170 protein using flow cytometric analysis. The MTT results demonstrated that the reduced chemocytotoxicity was correlated with the increased production of gp-170 protein in MIF and GSTpi transfectants.
To determine the molecular mechanism of Id-1 conferring the drug resistance in prostate cancer, we used the Id-1 stable transfectants to investigate and determine the effect of Id-1 expression and its underlying pathways on the development of multidrug resistance of prostate cancer. We found that Id-1 overproduction drove AT3 cells to become resistant to chemotherapeutic agents such as doxorubicin, taxol and cyclophosphamide but not due to the expression of mdr-1. The p38MAPK and c-jun N-terminal kinase (JNK) pathways were suppressed, and this correlated with increased expression of Id-1 after doxorubicin challenge. Treatment of the Id-1 expressing cells with p38MAPK and JNK inhibitors resulted in decreased doxorubicin-induced apoptosis. In contrast, Id-1 expressing cells treated with extracellular signal-regulated kinase (ERK) inhibitor made cells more sensitive to drug-induced apoptosis. In conclusion, overexpression of Id-1 can affect drug resistance of prostate cancer through the inhibition of p38MAPK and JNK pathways. In addition, sustained activation of ERK could provide cellular resistance to drug-induced cytotoxicity.
In conclusion, our data have provided following important informations: 1) using this MDR cells model combined with cDNA microarray method, we have successfully screened three important genes that overexpressed in MDR cell lines and its overexpression confer drug resistance in prostate cancer cells; 2) although overexpression of MIF and GSTpi genes induced mdr1 genes expression, they were unable to carry out all of the drug resistance phenotypic characteristics of MDR prostate cancer cells. It indicated there were alternative mechanisms that also confer drug resistance in prostate cancer; 3) Id-1, MIF and GSTpi may confer drug resistance not only due to the induction of mdr1 gene expression but also through their individual biological function. 4) overexpression of Id-1 in cells may lead to sustained activation of the ERK accompanying inhibition of the JNK and p38MAPK that results in promoting cells to be more resistant to drug-induced apoptosis. However, the cooperation of these three genes in the acquisition of drug resistant in prostate cancer cell line will be further addressed in animal models.
TABLE CONTENTS
TITLE…………………………………………………………………… I
ACKNOWLEDEMENTS……………………………………………… II
TABLE CONTENTS…………………………………………………… III
LIST OF FIGURES AND TABLES…………………………………… IIV
ENGLISH SUMMARY………………………………………………… IX
CHINESE SUMMARY………………………………………………… XIII
ABBREVIATIONS……………………………………………………… XVII

Chapter 1. General Introduction
1.1. Epidemiology of Prostate Cancer…………………………………… 1
1.1.1 Androgen receptor and androgen metabolism………………… 2
1.1.2. Insulin-like growth factors…………………………………… 4
1.1.3. Dietary factors………………………………………………… 5
1.2. Pathogenesis of Prostate Cancer
1.2.1. Early prostate cancer………………………………………… 7
1.2.2. Development of hormone-refractory tumors…………… 8
1.2.3. Progression, metastasis, and the role of tumor microenvironment 10
1.2.4. Bone Metastasis ……………………………………………… 13
1.3. Treatment of Prostate Cancer
1.3.1. Early-stage prostate cancer………………………………… 15
1.3.2. Metastatic prostate cancer…………………………………… 17
1.3.3. Hormone-refractory prostate cancer ……………………… 19
1.4. Further Study…………………………………………………… 21

Chapter 2. Association of Id-1, MIF and GSTpi with Multidrug Resistance in Prostate Cancer
2.1. Introduction………………………………………………………… 22
2.2. Material and Methods……………………………………………… 25
2.3. Results
2.3.1. Up-regulation of Id-1, MIF and GSTpi genes in multi-drug resistant cells of prostate cer …31
2.3.2. Establishment of stable cell lines overexpressing Id-1, MIF and GSTpi …31
2.3.3. Chemoresistance of cell lines………………………………… 32
2.3.4. Apoptotic activity analysis…………………………………… 33
2.3.5. Expression of mdr1 gene in transfectants…………………… 33
2.4 Discussion…………………………………………………………… 34

Chapter 3. Modulation of Multidrug Resistance MDR-1 Gene by MIF and GSTpi in Prostate Cancer Cells
3.1. Introduction………………………………………………………… 42
3.2. Material and Methods……………………………………………… 46
3.3. Results
3.3.1. Up-regulation of mdr-1 in multidrug resistance cell line cells 51
3.3.2. Production of MIF and GSTpi in multidrug resistance cell line of prostate cancer 51
3.3.3. Induction of p-gp170 expression by MIF and GSTpi expression… 52
3.3.4. Chemoresistance in MIF and GSTpi transfectant clones………53
2.4 Discussion …………………………………………………………… 54

Chapter 4. Downregulation of JNK and p38MAPK by Id-1 Decreases Chemosensitivity to Doxorubicin in Prostate Cancer Cells
4.1. Introduction ………………………………………………………… 59
4.2. Material and Methods ……………………………………………… 62
4.3. Results
4.3.1. Upregulation of Id-1 in multidrug-resistant prostate cancer cells 68
4.3.2. Drug resistance of Id-1 transfectant cells ……………………69
4.3.3. Regulation of JNK and p38MAPK cascades by Id-1 expression70
4.3.4. Effect of Id-1 expression on drug-induced cytotoxicity through the regulation of MAPK cascades …71
4.4 Discussion …………………………………………………………… 73

Chapter 5. Conclusion ………………………………………………… 78
References………………………………………………………………… 79
Figures……………………………………………………………………… 103
Tables……………………………………………………………………… 124
Appendices………………………………………………………………… 129
1.NCI's Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review. 1975-2001.
2.Zincke H, Bergstralh EJ, Blute ML, Myers RP, Barrett DM, Lieber MM, Martin SK, Oesterling JE. Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol 1994;12(11):2254-2263.
3.Yatani R, Chigusa I, Akazaki K, Stemmermann GN, Welsh RA, Correa P. Geographic pathology of latent prostatic carcinoma. Int J Cancer 1982;29(6):611-616.
4.Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 1968;40(1):43-68.
5.Haenszel W. Cancer mortality among the foreign-born in the United States. J Natl Cancer Inst 1961;26:37-132.
6.Easton DF, Schaid DJ, Whittemore AS, Isaacs WJ. Where are the prostate cancer genes?--A summary of eight genome wide searches. Prostate 2003;57(4):261-269.
7.Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, and Xu J et al. Germline mutations in the ribonuclease L gene in families showinglinkage with HPC1. Nat Genet 2002;30(2):181-184.
8.Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001;27(2):172-180.
9.Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002;32(2):321-325.
10.Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995;55(9):1937-1940.
11.Bennett CL, Price DK, Kim S, Liu D, Jovanovic BD, Nathan D, Johnson ME, Montgomery JS, Cude K, Brockbank JC, Sartor O, Figg WD. Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J Clin Oncol 2002;20(17):3599-3604.
12.Xue W, Irvine RA, Yu MC, Ross RK, Coetzee GA, Ingles SA. Susceptibility to prostate cancer: interaction between genotypes at the androgen receptor and prostate-specific antigen loci. Cancer Res 2000;60(4):839-841.
13.Chang BL, Zheng SL, Hawkins GA, Isaacs SD, Wiley KE, Turner A, Carpten JD, Bleecker ER, Walsh PC, Trent JM, Meyers DA, Isaacs WB, Xu J. Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Res 2002;62(6):1784-1789.
14.Makridakis NM, Ross RK, Pike MC, Crocitto LE, Kolonel LN, Pearce CL, Henderson BE, Reichardt JK. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999;354(9183):975-978.
15.Jaffe JM, Malkowicz SB, Walker AH, MacBride S, Peschel R, Tomaszewski J, Van Arsdalen K, Wein AJ, Rebbeck TR. Association of SRD5A2 genotype and pathological characteristics of prostate tumors. Cancer Res 2000;60(6):1626-1630.
16.Stanford JL, Noonan EA, Iwasaki L, Kolb S, Chadwick RB, Feng Z, Ostrander EA. A polymorphism in the CYP17 gene and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2002;11(3):243-247.
17.Li L, Yu H, Schumacher F, Casey G, Witte JS. Relation of serum insulin-like growth factor-I (IGF-I) and IGF binding protein-3 to risk of prostate cancer (United States). Cancer Causes Control 2003;14(8):721-726.
18.Kristal AR, Cohen JH, Qu P, Stanford JL. Associations of energy, fat, calcium, and vitamin D with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11(8):719-725.
19.Zheng SL, Chang BL, Faith DA, Johnson JR, Isaacs SD, Hawkins GA, Turner A, Wiley KE, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB, Xu J. Sequence variants of alpha-methylacyl-CoA racemase are associated with prostate cancer risk. Cancer Res 2002;62(22):6485-6488.
20.Archer CL, Morse P, Jones RF, Shirai T, Haas GP, Wang CY. Carcinogenicity of the N-hydroxy derivative of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-3, 8-dimethyl-imidazo[4,5-f]quinoxaline and 3, 2'-dimethyl-4-aminobiphenyl in the rat. Cancer Lett 2000;155(1):55-60.
21.Hein DW, Leff MA, Ishibe N, Sinha R, Frazier HA, Doll MA, Xiao GH, Weinrich MC, Caporaso NE. Association of prostate cancer with rapid N-acetyltransferase 1 (NAT1*10) in combination with slow N-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environ Mol Mutagen 2002;40(3):161-167.
22.Gann PH, Ma J, Giovannucci E, Willett W, Sacks FM, Hennekens CH, Stampfer MJ. Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res 1999;59(6):1225-1230.
23.Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, Hawkins GA, Chang BL, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 2002;62(8):2253-2257.
24.Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev 2000;14(19):2410-2434.
25.Moul JW, Merseburger AS, Srivastava S. Molecular markers in prostate cancer: the role in preoperative staging. Clin Prostate Cancer 2002;1(1):42-50.
26.Nelson WG, De Marzo AM, DeWeese TL. The molecular pathogenesis of prostate cancer: Implications for prostate cancer prevention. Urology 2001;57(4 Suppl 1):39-45.
27.Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS, Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 2001;159(5):1815-1826.
28.Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 1994;91(24):11733-11737.
29.Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ. Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 2002;21(7):1048-1061.
30.Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 2003;9(7):2673-2677.
31.Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 2002;62(4):1008-1013.
32.Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001;93(22):1687-1697.
33.Olumi AF, Dazin P, Tlsty TD. A novel coculture technique demonstrates that normal human prostatic fibroblasts contribute to tumor formation of LNCaP cells by retarding cell death. Cancer Res 1998;58(20):4525-4530.
34.Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002;8(9):2912-2923.
35.Tuxhorn JA, Ayala GE, Rowley DR. Reactive stroma in prostate cancer progression. J Urol 2001;166(6):2472-2483.
36.Nakashiro K, Okamoto M, Hayashi Y, Oyasu R. Hepatocyte growth factor secreted by prostate-derived stromal cells stimulates growth of androgen-independent human prostatic carcinoma cells. Am J Pathol 2000;157(3):795-803.
37.Nakashiro K, Hayashi Y, Oyasu R. Immunohistochemical expression of hepatocyte growth factor and c-Met/HGF receptor in benign and malignant human prostate tissue. Oncol Rep 2003;10(5):1149-1153.
38.Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 2002;99(2):715-720.
39.Rhee HW, Zhau HE, Pathak S, Multani AS, Pennanen S, Visakorpi T, Chung LW. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim 2001;37(3):127-140.
40.Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol 2001;11(2):97-104.
41.Simpson MA, Reiland J, Burger SR, Furcht LT, Spicer AP, Oegema TR, Jr., McCarthy JB. Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention, a prerequisite for rapid adhesion to bone marrow endothelial cells. J Biol Chem 2001;276(21):17949-17957.
42.Simpson MA, Wilson CM, Furcht LT, Spicer AP, Oegema TR, Jr., McCarthy JB. Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells. J Biol Chem 2002;277(12):10050-10057.
43.Simpson MA, Wilson CM, McCarthy JB. Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am J Pathol 2002;161(3):849-857.
44.Liu N, Gao F, Han Z, Xu X, Underhill CB, Zhang L. Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res 2001;61(13):5207-5214.
45.Lin DL, Tarnowski CP, Zhang J, Dai J, Rohn E, Patel AH, Morris MD, Keller ET. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 2001;47(3):212-221.
46.Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, Taichman RS. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev 2001;20(3-4):333-349.
47.Goltzman D. Mechanisms of the development of osteoblastic metastases. Cancer 1997;80(8 Suppl):1581-1587.
48.Cher ML, Biliran HR, Jr., Bhagat S, Meng Y, Che M, Lockett J, Abrams J, Fridman R, Zachareas M, Sheng S. Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proc Natl Acad Sci U S A 2003;100(13):7847-7852.
49.Johansson JE, Adami HO, Andersson SO, Bergstrom R, Krusemo UB, Kraaz W. Natural history of localised prostatic cancer. A population-based study in 223 untreated patients. Lancet 1989;1(8642):799-803.
50.Adolfsson J, Steineck G, Whitmore WF, Jr. Recent results of management of palpable clinically localized prostate cancer. Cancer 1993;72(2):310-322.
51.Paulson DF. Randomized series of treatment with surgery versus radiation for prostate adenocarcinoma. NCI Monogr 1988(7):127-131.
52.Bagshaw MA, Cox RS, Ray GR. Status of radiation treatment of prostate cancer at Stanford University. NCI Monogr 1988(7):47-60.
53.Lange PH. Controversies in management of apparently localized carcinoma of prostate. Urology 1989;34(4 Suppl):13-18; discussion 46-56.
54.Walsh PC. Radical retropubic prostatectomy with reduced morbidity: an anatomic approach. NCI Monogr 1988(7):133-137.
55.Epstein JI, Carmichael MJ, Pizov G, Walsh PC. Influence of capsular penetration on progression following radical prostatectomy: a study of 196 cases with long-term followup. J Urol 1993;150(1):135-141.
56.Hsieh WS, Simons JW. Systemic therapy of prostate cancer. New concepts from prostate cancer tumor biology. Cancer Treat Rev 1993;19(3):229-260.
57.Logothetis CJ, Hoosein NM, Hsieh JT. The clinical and biological study of androgen independent prostate cancer (AI PCa). Semin Oncol 1994;21(5):620-629.
58.Yuan SJ. The Biostatistics of Republic of China. Taipei, Republic of China: Bureau of Health 1998.
59.Blackard CE, Byar DP, Jordan WP, Jr. Orchiectomy for advanced prostatic carcinoma. A reevaluation. Urology 1973;1(6):553-560.
60.Gittes RF. Carcinoma of the prostate. N Engl J Med 1991;324(4):236-245.
61.Lehnert M. Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer 1996;32A(6):912-920.
62.Gros P, Ben Neriah YB, Croop JM, Housman DE. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 1986;323(6090):728-731.
63.Grant CE, Valdimarsson G, Hipfner DR, Almquist KC, Cole SP, Deeley RG. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res 1994;54(2):357-361.
64.Pommier Y, Kerrigan D, Schwartz RE, Swack JA, McCurdy A. Altered DNA topoisomerase II activity in Chinese hamster cells resistant to topoisomerase II inhibitors. Cancer Res 1986;46(6):3075-3081.
65.Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994;54(16):4313-4320.
66.O'Dwyer PJ, Hamilton TC, Yao KS, Tew KD, Ozols RF. Modulation of glutathione and related enzymes in reversal of resistance to anticancer drugs. Hematol Oncol Clin North Am 1995;9(2):383-396.
67.Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267(5203):1456-1462.
68.Replogle-Schwab TS, Schwab ED, Pienta KJ. Development of doxorubicin resistant rat prostate cancer cell lines. Anticancer Res 1997;17(6D):4535-4538.
69.Meyer-Siegler K, Hudson PB. Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology 1996;48(3):448-452.
70.Ouyang XS, Wang X, Lee DT, Tsao SW, Wong YC. Over expression of ID-1 in prostate cancer. J Urol 2002;167(6):2598-2602.
71.Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 1999;190(10):1375-1382.
72.Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC. Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene 2003;22(29):4498-4508.
73.Cheung HW, Ling MT, Tsao SW, Wong YC, Wang X. Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis 2004;25(6):881-887.
74.Li M, Ittmann MM, Rowley DR, Knowlton AA, Vaid AK, Epner DE. Glutathione S-transferase pi is upregulated in the stromal compartment of hormone independent prostate cancer. Prostate 2003;56(2):98-105.
75.Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987;47(4):936-942.
76.Robert J. Multidrug resistance in oncology: diagnostic and therapeutic approaches. Eur J Clin Invest 1999;29(6):536-545.
77.Meyer-Siegler KL, Bellino MA, Tannenbaum M. Macrophage migration inhibitory factor evaluation compared with prostate specific antigen as a biomarker in patients with prostate carcinoma. Cancer 2002;94(5):1449-1456.
78.Coppe JP, Itahana Y, Moore DH, Bennington JL, Desprez PY. Id-1 and Id-2 proteins as molecular markers for human prostate cancer progression. Clin Cancer Res 2004;10(6):2044-2051.
79.Kim WJ, Kakehi Y, Wu WJ, Fukumoto M, Yoshida O. Expression of multidrug resistance-related genes (mdrl, MRP, GST-pi and DNA topoisomerase II) in urothelial cancers. Br J Urol 1996;78(3):361-368.
80.Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 1987;84(9):3004-3008.
81.Norton JD, Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol 1998;18(4):2371-2381.
82.Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res 2000;60(5):1332-1340.
83.Ling MT, Wang X, Ouyang XS, Lee TK, Fan TY, Xu K, Tsao SW, Wong YC. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene 2002;21(55):8498-8505.
84.Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281(5383):1680-1683.
85.Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995;377(6544):68-71.
86.Donnelly SC, Haslett C, Reid PT, Grant IS, Wallace WA, Metz CN, Bruce LJ, Bucala R. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nat Med 1997;3(3):320-323.
87.Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A 1996;93(15):7849-7854.
88.Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincon M. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 2001;61(24):8851-8858.
89.Karan D, Kelly DL, Rizzino A, Lin MF, Batra SK. Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis 2002;23(6):967-975.
90.Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol 1985;57:357-417.
91.Kartner N, Evernden-Porelle D, Bradley G, Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 1985;316(6031):820-823.
92.Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 1985;316(6031):817-819.
93.Meyer-Siegler K. Increased stability of macrophage migration inhibitory factor (MIF) in DU-145 prostate cancer cells. J Interferon Cytokine Res 2000;20(9):769-778.
94.Legendre H, Decaestecker C, Nagy N, Hendlisz A, Schuring MP, Salmon I, Gabius HJ, Pector JC, Kiss R. Prognostic values of galectin-3 and the macrophage migration inhibitory factor (MIF) in human colorectal cancers. Mod Pathol 2003;16(5):491-504.
95.Shimizu T, Abe R, Nakamura H, Ohkawara A, Suzuki M, Nishihira J. High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem Biophys Res Commun 1999;264(3):751-758.
96.Ishii T, Matsuse T, Igarashi H, Masuda M, Teramoto S, Ouchi Y. Tobacco smoke reduces viability in human lung fibroblasts: protective effect of glutathione S-transferase P1. Am J Physiol Lung Cell Mol Physiol 2001;280(6):L1189-1195.
97.Moscow JA, Fairchild CR, Madden MJ, Ransom DT, Wieand HS, O'Brien EE, Poplack DG, Cossman J, Myers CE, Cowan KH. Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 1989;49(6):1422-1428.
98.Lee CF, Chang SY, Hsieh DS, Yu DS. Immunotherapy for bladder cancer using recombinant bacillus Calmette-Guerin DNA vaccines and interleukin-12 DNA vaccine. J Urol 2004;171(3):1343-1347.
99.Lavelle F. [MIF and P53: 2 major partners at the inflammation and cancer crossroad]. Bull Cancer 2000;87(2):133-134.
100. Goto S, Ihara Y, Urata Y, Izumi S, Abe K, Koji T, Kondo T. Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transferase pi. Faseb J 2001;15(14):2702-2714.
101. Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG, De Marzo AM. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 2003;163(3):923-933.
102. Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 2004;91(3):540-552.
103. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999;401(6754):670-677.
104. Nickoloff BJ, Chaturvedi V, Bacon P, Qin JZ, Denning MF, Diaz MO. Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem 2000;275(36):27501-27504.
105. Schindl M, Oberhuber G, Obermair A, Schoppmann SF, Karner B, Birner P. Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer. Cancer Res 2001;61(15):5703-5706.
106. Schoppmann SF, Schindl M, Bayer G, Aumayr K, Dienes J, Horvat R, Rudas M, Gnant M, Jakesz R, Birner P. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 2003;104(6):677-682.
107. Schindl M, Schoppmann SF, Strobel T, Heinzl H, Leisser C, Horvat R, Birner P. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin Cancer Res 2003;9(2):779-785.
108. Hickman JA. Apoptosis and chemotherapy resistance. Eur J Cancer 1996;32A(6):921-926.
109. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 2004;23(16):2934-2949.
110. Osborn MT, Chambers TC. Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J Biol Chem 1996;271(48):30950-30955.
111.Chuang SM, Wang IC, Yang JL. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 2000;21(7):1423-1432.
112.Costa-Pereira AP, McKenna SL, Cotter TG. Activation of SAPK/JNK by camptothecin sensitizes androgen-independent prostate cancer cells to Fas-induced apoptosis. Br J Cancer 2000;82(11):1827-1834.
113.Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001;20(2):147-155.
114.Curtin JF, Cotter TG. Anisomycin activates JNK and sensitises DU 145 prostate carcinoma cells to Fas mediated apoptosis. Br J Cancer 2002;87(10):1188-1194.
115.Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D, Kaushal GP, Chambers TC. The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 2003;66(3):459-469.
116.Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999;19(4):2435-2444.
117.Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997;9(2):180-186.
118.Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995;80(2):199-211.
119.Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999;11(2):211-218.
120.Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298(5600):1911-1912.
121.Zhao Y, You H, Yang Y, Wei L, Zhang X, Yao L, Fan D, Yu Q. Distinctive regulation and function of PI 3K/Akt and MAPKs in doxorubicin-induced apoptosis of human lung adenocarcinoma cells. J Cell Biochem 2004;91(3):621-632.
122.Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, Mills GB, Claret FX. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 2003;278(21):19245-19256.
123.Yu R, Shtil AA, Tan TH, Roninson IB, Kong AN. Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett 1996;107(1):73-81.
124.Kim J, Freeman MR. JNK/SAPK mediates doxorubicin-induced differentiation and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res Treat 2003;79(3):321-328.
125.Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270(5240):1326-1331.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top