跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏廉昇
研究生(外文):Lien-Sheng Wei
論文名稱:無線區域網路之CMOS鏡像拒斥低雜訊放大器、超寬頻系統之電流再利用低雜訊放大器、超寬頻系統之低功率高線性度無電感混頻器之設計與研究
論文名稱(外文):Design of CMOS Image-Rejection LNA for WLAN, Current-Reused LNA for UWB, and Low-Power High-Linearity Inductorless Mixer for UWB
指導教授:周復芳
指導教授(外文):Christina F. Jou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:77
中文關鍵詞:鏡像拒斥低雜訊放大器超寬頻系統無線區域網路混頻器
外文關鍵詞:Image-RejectionLow-Noise AmplifierUWBWLANMixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:887
  • 評分評分:
  • 下載下載:202
  • 收藏至我的研究室書目清單書目收藏:0
本論文的第一部份探討具有鏡像拒斥功能之低功率低雜訊放大器應用於IEEE 802.11a,此電路設計一並聯電感電容槽於電流再利用架構的內部級來達成鏡像拒斥的功能,鏡像拒斥濾波器的原理及品質因數Q強化技巧將被分析與介紹,量測結果顯示此電路擁有令人滿意的效能與-27 dB的鏡像拒斥能力。
在第二部份中將提出一超寬頻低雜訊放大器,此電路改善電阻並聯回授放大器,將其電阻負載用PMOS替代。藉由堆疊兩顆電晶體並在其閘級與汲級間加入回授電阻,此超寬頻低雜訊放大器能夠同時達到高增益與輸入端寬頻匹配,量測結果顯示:優於-10 dB之輸入與輸出端反射損耗、3.3 dB之最小雜訊指數、14.1 dB之平均增益並消耗14.4 mW之功率。
最後部份提出一低功率、高線性度、無電感混頻器應用於超寬頻通訊系統,此混頻器利用共閘級放大器作為轉導級,使之較易達到寬頻輸入端匹配且不需要電感,一些線性度改善技巧將被利用來增加IIP3,量測結果顯示:在3.1到10.6 GHz頻段其射頻端反射損耗大於-10 dB,在100 MHz中頻端反射損耗為-26 dB,且達到3到8 dBm之高線性度與4.68 mW之低功率消耗。
In the first part of this thesis, a low-power low-noise amplifier (LNA) with image-rejection (IR) function is designed for IEEE 802.11a. It exploits a simple parallel LC tank in inter-stage of current-reused configuration to achieve IR function. The principles of IR filter will be analyzed and quality factor Q enhancement technique will be introduced. The measured results show the satisfied performances and IR ability of -27 dB.
In the second part, an ultra-wideband (UWB) LNA is proposed. It improves resistive shunt feedback amplifier to replace load resistor by a PMOS. By stacking two transistors and employing a feedback resistor to connect gate and drain, the proposed LNA can simultaneously achieve high gain and input impedance matching. The measured results reveal better than -10 dB input and output return loss, minimum noise figure of 3.3 dB, and average gain of 14.1 dB from consuming 14.4 mW power.
Finally, a low-power, high-linearity, and inductorless mixer for UWB communication is presented. The mixer adopts common-gate amplifier as transconductance stage to easily achieve wideband matching without inductors. Some linearity-improvement techniques are exploited to increase the IIP3. The measured results express better than -10 dB RF port return loss in 3.1-10.6 GHz, IF port return loss of -26 dB at 100 MHz, high IIP3 of 3~8 dBm, and low power consumption of 4.68 mW.
Chapter 1 Introduction - 1 -
1.1 Background and motivation - 1 -
1.2 Thesis organization - 3 -
Chapter 2 Design of LNA with Image-Rejection Function for WLAN system - 4 -
2.1 Introduction - 4 -
2.2 Numerous topology of IR LNA - 5 -
2.3 Conventional current-reused amplifier - 9 -
2.4 Architecture - 10 -
2.5 Design considerations - 11 -
2.5.1 Input matching analysis - 11 -
2.5.2 Image-rejection filter analysis - 12 -
2.6 Chip implementation and measured results - 16 -
2.6.1 Measurement considerations - 16 -
2.6.2 Measured Results and discussion - 19 -
2.6.3 Comparison with other literatures - 25 -
Chapter 3 Design of Current-Reused LNA for UWB - 27 -
3.1 Introduction - 27 -
3.2 Numerous topology of wideband LNA - 27 -
3.3 Architecture - 30 -
3.4 Design considerations - 31 -
3.4.1 Gain analysis - 32 -
3.4.2 Input matching analysis - 32 -
3.5 Chip implementation and measured results - 35 -
3.5.1 Layout considerations - 35 -
3.5.2 Measurement considerations - 36 -
3.5.3 Measured and simulated results - 40 -
3.5.4 Comparison with other literatures - 48 -
Chapter 4 Design of Low-Power High-Linearity Inductorless Mixer for UWB - 50 -
4.1 Introduction - 50 -
4.2 Architecture - 52 -
4.3 Design considerations - 53 -
4.3.1 Common-gate transconductance stage with source resistor - 53 -
4.3.2 Current-Injection Technique - 56 -
4.4 Chip implementation and measured results - 57 -
4.4.1 Measured considerations - 57 -
4.4.2 Measured Results and discussion - 62 -
4.4.3 Comparison with other literatures - 69 -
Chapter 5 Conclusion and Future Work - 71 -
5.1 Conclusion - 71 -
5.1.1 Design of LNA with IR function for WLAN system - 71 -
5.1.2 Design of current-reused LNA for UWB system - 72 -
5.1.3 Design of low-power high-linarity inductorless mixer for UWB system - 72 -
5.2 Future work - 73 -
Reference - 74 -
Vita - 77 -
Publication Remarks - 77 -
[1] J. Macedo et al., “A 1.9 GHz silicon receiver with monolithic image reject filtering,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 378–386, Mar. 1998.
[2] H. Samavati et al., “A 5-GHz CMOS wireless LNA receiver front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765–772, May 2000.
[3] Trung-Kien Nguyen, Nam-Jin Oh, Choong-Yul Cha, Yong-Hun Oh, Gook-Ju Ihm, and Sang-Gug Lee., “Image-Rejection CMOS Low-Noise Amplifier Design Optimization Techniques,” IEEE Trans. Microwave Theory and Techniques, vol. 53, no. 2, February 2005.
[4] Ming-Chang Sun, Shing Tenqchen, Ying-Haw Shu, and Wu-Shiung Feng., “A 2.4 GHz CMOS image-reject low noise amplifier,” Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium, vol. 1, pp. I-329–I-332, 2003.
[5] Moneim Youssef A. A., Sharaf K., Ragaie H.F., and Marzouk Ibrahim M., “VLSI design of CMOS image-reject LNA for 950-MHz wireless receivers,” Circuits and Systems for Communications, 2002. Proceedings. ICCSC '02. 1st IEEE International Conference, pp. 330-333, 2002.
[6] R.-C. Liu, K.-L. Deng, and H. Wang, “A 0.6-22 GHz broadband CMOS distributed amplifier,” Radio Frequency Integrated Circuits Symp. Dig. Papers, 2002, pp. 103-106.
[7] Robert Hu, ”Wide-Band Matched LNA Design using transistor’s intrinsic Gate-Drain Capacitor,” Microwave Theory and Techniques, vol. 54, No. 3.
[8] C.W. Kim, M.S. Jung and S.G. Lee, “Ultra-Wideband CMOS low noise amplifier,” electronics letters, vol. 41, no. 7, pp.384-385.

[9] Liao, C.F. and Liu, S.I., “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receiver,” Proc. IEEE Custom Integrated Circuits Conf., pp. 161–164. 2005.
[10] Kuan-Hung Chen and Chorng-Kuang Wang, “A 3.1~10.6 GHz CMOS Cascaded Two-stage Distributed Amplifier for Ultra-Wideband Application,” IEEE Asia-Pacific Conference, pp. 296 – 299, Aug. 2004.
[11] J.-H. Lee, C.-C. Chen, and Y.-S. Lin., “0.18um 3.1–10.6 GHz CMOS UWB LNA with 11.4 0.4 dB gain and 100.7 17.4 ps group delay,” ELECTRONICS LETTERS, vol.43, no. 24, 22 Nov. 2007.
[12] H.-Y. Yang, Y.-S. Lin, and C.-C. Chen, “ 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation,” ELECTRONICS LETTERS, vol.44, no.8, 10 Apr. 2008.
[13] Li, Q., Zhang, Y.P., and Chang, J.S., “An inductorless low-noise amplifier with noise cancellation for UWB receiver front-end,” Proc. IEEE Asian Solid-State Circuits Conf. pp. 267–270, 2006.
[14] Safarian, A. Yazdi, and P. Heydari, “Design and Analysis of an Ultra wide-Band Distributed CMOS Mixer,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 5, pp. 618-629, May, 2005.
[15] M. Tsai and H. Wang, “A 0.3-25 GHz Ultra-Wideband Mixer using Commercial 0.18um CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 11, pp. 522-524, Nov. 2004.
[16] Leonard A. MacEachern and Tajinder Manku, “A Charge-Injection Method for Gilbert Cell Biasing,” Electrical and Computer Engineering, pp. 365-368, 1998.
[17] Hooman Darabi and Janice Chiu, “A Noise Cancellation Technique in Active RF-CMOS Mixers,” IEEE Journal of solid-state circuits, vol. 40, no. 12, Dec. 2005.
[18] W. L. Chen, G. W. Huang, and S. F. Chang, ” BROADBAND CMOS MIXER CELL FOR UWB APPLICATIONS,” Microwave and Optical Technology Letters, vol. 49, Issue 1, pp.127-128, Jan. 2007.
[19] Jeong-Bae Seo, Kun-Man Park, Jong-Ha Kim, Jin-Hong Park, Young-Sop Lee, Jeong-Hyun Ham, and Tae-Yeoul Yun, “A Low-Noise UWB CMOS Mixer Using Switched Biasing Technique,” Radio-Frequency Integration Technology, 2007. RFIT 007, pp. 42-45, 9-11 Dec. 2007.
[20] Satyanarayana Reddy, K., Annamalai Arasu, M., King Wah Wong, Yuanjin Zheng, and Fujiang Lin, “Low-Power UWB LNA and Mixer using 0.18-um CMOS Technology,” ESSCIRC 2006 Solid-State Circuits Conference, pp. 259-262, Sept. 2006.
[21] Goo-Young Jung, Jae-Hoon Shin, and Tae-Yeoul Yun, “A low-noise UWB CMOS mixer using current bleeding and resonant inductor techniques,” Miceowave and Optical Technology Letters, vol. 49, issue 4, pp. 1595-1597, July 2007.
[22] Chang, F.-C., Huang, P.-C., Chao, S.-F., Wang, H., “A Low Power Folded Mixer for UWB System Applications in 0.18-um CMOS Technology,” IEEE Miceowave and Wireless Compoenets Letters, vol. 17, issue 5, pp. 367-369, May 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於超寬頻系統之電流再利用低雜訊放大器、9-26GHz寬頻互補式電晶體低雜訊放大器之設計與研究
2. 具抑制頻寬外增益功能之帶斥特性超寬頻低雜訊放大器與2.5-11GHz主動式寬頻匹配超寬頻低雜訊放大器
3. 15-28 GHz CMOS寬頻低雜訊放大器及60-GHz非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器/IQ混頻器電路之研製
4. 應用於IEEE802.11a/b/g之雙頻帶低雜訊放大器和偶次諧波降頻混頻器以及使用0.18umCMOS製作之Ka頻低雜訊放大器和K頻壓控震盪器
5. 3.1-10.6GHz矽鍺超寬頻低雜訊放大器與ka頻段低雜訊放大器之研究
6. CMOS 60 GHz寬頻低雜訊放大器及24 GHz低雜訊放大器使用蜂巢型電感之設計
7. 應用於MillimeterWave射頻接收機之CMOS低雜訊放大器與CMOS降頻器設計研究
8. 應用於超寬頻與802.11a無線射頻接收機之CMOS低功率低電壓及改善閃爍雜訊技術之混頻器與超低功率混頻器之設計與研究
9. 低功率變壓器回授與低電壓多頻之壓控震盪器和超寬頻系統之低雜訊放大器設計與研究
10. 設計低相位雜訊四相位震盪器與高增益降頻混頻器
11. 超寬頻次諧波正交中頻訊號混頻器與鏡像消除混頻器
12. 應用於藍芽系統之超低電壓(0.7V)可調增益低雜訊放大器及混頻器設計
13. 802.11aWLAN接收機射頻系統規劃與5GHzCMOS差動LNA/Mixer之設計
14. 第五代通訊系統之帶通濾波器與 寬頻低雜訊放大器之設計
15. 應用於無線通訊系統之低功耗低雜訊放大器設計