跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑜芝
研究生(外文):Yu-Chih Chang
論文名稱:一個24GHz的Doherty功率放大器
論文名稱(外文):A 24GHz Doherty Power Amplifier
指導教授:莊晴光
口試委員:許博文吳瑞北張志揚林清泉
口試日期:2011-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:65
中文關鍵詞:變壓器耦合全差動功率變壓器耦合全差動功率變壓器耦合全差動功率變壓器耦合全差動功率變壓器耦合全差動功率變壓器耦合全差動功率變壓器耦合全差動功率
外文關鍵詞:power amplifiertransformer-coupled fully differential power amplifierpower-added-efficiencypower gaindelivered output powerbandwidth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出了兩個電路,一個是Doherty 功率放大器,另外一個是變壓器耦合全差動功率放大器.兩個都是操作在24 千兆赫茲.儘管Doherty 功率放大器已經被廣泛的討論過,但是對高頻的Doherty 功率放大器則相對缺乏.量測結果顯示出Doherty 功率放大器的電路架構很難在高頻的時候達到高的功率附加效率.這篇論文中的一級Doherty 功率放大器,使用台積電的130 奈米製程,量測到的功率增益是6.9 dB,輸出功率10 dBm, 量測到的頻寬是22.73 %,以及晶片大小是0.57mm².然而,量測到的功率附加效率只有8.3 %,這個一級的功率放大器在1.2 伏特的偏壓下消耗的電流是25 毫安培.為了達到更高的功率附加效率和功率增益,但不犧牲功率消耗的目標,這裡提出了一個交叉耦合電容的差動放大器,為了驗證此方法,一個差動電路和變壓器耦合全差動功率放大器電路一起設計用來比較,模擬結果證實了這個論點,使用一個相抵的技術的確可以提高穩定性,使用這種電路架構的一級功率放大器可以達到很突出的頻寬,69.6 %,在相同的偏壓下,模擬結果的功率增益是11.059 dB,功率附加效率是24.244 %.

This research proposes two circuits, one is a Doherty Power Amplifier (DPA), and the other one is a transformer-coupled fully differential power amplifier, both operating at 24 GHz. Although the DPA has been extensively investigated, the effects of DPA at high frequency DPA is still relatively unexplored. Test results, suggest it is hard to
achieve high power-added-efficiency (PAE) using DPA construction at higher
frequencies. A single-stage 24 GHz DPA fabricated in the TSMC 130-nm CMOS
process presented in this thesis, has a measured gain of 6.9 dB, delivered output
power is 10 dBm, measured bandwidth is 22.73 % and the chip area is 0.57 mm².
However, measured PAE is only 8.3 %, and this single-stage PA consumes 25 mA
from a bias voltage of 1.2V.
In order to achieve higher PAE and gain without compromising power consumption, I
intend to present a differential amplifier with cross-coupled capacitors. To verify this
proposed method, a differential circuit and a transformer-coupled fully differential
amplifier have been designed for comparison. A simulation test strongly supports the
argument that using neutralization technique improves stability. A single-stage PA
using this kind of circuit configuration obtains an outstanding bandwidth of 69.6 %
vi
with same supply voltage, simulated gain is 11.059 dB, PAE is 24.244 % .

口試委員會審定書........................................................................................................... #
誌謝………………………………………………………………………………….iii
中文摘要…………………………………………………………………………….iv
ABSTRACT………………………………………………………………………….v
CONTENTS………………………………………………………………………...vii
LIST OF FIGURES………………………………………………………………… ix
LIST OF TABLES………………………………………………………………….xvi
Chapter 1 Introduction………………………………………………………….1
Chapter 2 A 24GHz Doherty Power Amplifier....................................................... 3
2.1 Introduction................................................................................................... 3
2.2 Method ..........................................................................................................5
2.2.1 Research Design ...................................................................................5
2.2.2 Simulation And Measured Results. .................................................... 11
2.3 Discussion And Conclusions……………………………………………16
Chapter 3 A 24GHz differential amplifier with cross-coupled capacitors ......... 18
3.1 Introduction…………………………………………………………….18
3.2 Method ........................................................................................................26
3.2.1 Research Design………………………………………………….26
viii
3.2.2 Simulation Results………………………………………………..35
3.3 Discussion And Conclusions……………………………………………42
Chapter 4 Comparison And Conclusions……………………………………...45
BIBLIOGRAPHY AND REFERENCES……………………………………………48

[1] Noël Deferm, and Patrick Reynaert, “A 100GHz Transformer-Coupled Fully
Differential Amplifier in 90nm CMOS,” 2010 IEEE Radio Frequency Integrated
Circuits Symposium.
[2] W. H. Doherty, “ A new high efficiency power amplifier for modulated waves,”
Proceedings of the IRE, Vol. 24, No. 9, pp. 1163-1182, 1936
[3] B. Kim, J. Kim, and J. Cha, “The Doherty power amplifier,” IEEE Microwave
Magazine, Vol. 7, No. 5, pp. 42-50, October 2006.
[4] F. H. Raab, “Efficiency of Doherty RF-power amplifier systems,” IEEE Trans.
Broadcast, Vol. BC-33, No. 3, pp. 77-83, September 1987.
[5] Morteza Nick, and Amir Mortazawi, “A Doherty Power Amplifier with Extended
Resonance Power Divider for Linearity Improvement,” Microwave Symposium
Digest, 2008 IEEE MTT-S International, pp. 423-426, June, 2008.
[6] Y. Yang, J. Yi, Y. Y. Woo, and B. Kim, “Optimum design for linearity and
efficiency of a microwave Doherty amplifier using a new load matching
technique,” Microwave Journal, Vol. 44, No. 12, pp. 22-36, 2001.
[7] Byron Wicks, Efstratios Skafidas, and Rob Evans, “A 60-GHz fully-integrated
Doherty power amplifier based on 0.13-μm CMOS process,” IEEE Radio
Frequency Integrated Circuits Symposium, pp. 69 -72, 2008.
[8] K.W. Kobayashi, A.K. Oki, A. Gutierrez-Aitken, P. Chin, Li Yang, E. Kaneshiro,
P.C. Grossman, K. Sato, T.R. Block, H.C. Yen, and D.C. Streit, “An 18-21 GHz
InP DHBT Linear Microwave Doherty Amplifier,” IEEE Radio Frequency
Integrated Circuits (RFIC) Symposium, pp. 179 – 182, 2000
[9] Changhua Cao, Haifeng Xu, Yu Su and Kenneth K.O, “An 18-GHz, 10.9dBm
Fully-Integrated Power Amplifier with 23.5 PAE in 130-nm CMOS,” This paper
appears in: Solid-State Circuits Conference, 2005. ESSCIRC 2005, pp. 137 – 140
[10] Jing-Lin Kuo, Zuo-Min Tsai, Huei Wang, “ A 19.1-dBm Fully-Integrated 24GHz
Power Amplifier Using 0.18-um CMOS Technology,” Wireless Technology,
2008. EuWiT 2008. European Conference, pp. 234 – 237
[11] Abbas Komijani, Arun Natarajan, Ali Hajimiri, “A 24-GHz, +14.5dBm Fully
Integrated Power Amplifier in 0.18-um CMOS,” IEEE JOURNAL OF
SOLID-STATE CIRCUITS, VOL. 40, NO. 9, SEPTEMBER 2005
[12] Chih-Chiang Chen, Ching-Kuang C. Tzuang,” Synthetic Quasi-TEM Meandered
Transmission Lines for Compacted Microwave Integrated Circuits,” IEEE
transactions on microwave theory and techniques, vol. 52, NO. 6, June 2004
[13] Yung-Nien Jen, Jeng-Han Tsai, Chung-Te Peng, Tian-Wei Huang,” A 20 to 24
GHz +16.8 dBm Fully Integrated Power Amplifier Using 0.18 um CMOS
- 49 -
Process,” IEEE microwave and wireless components letters, vol. 19, NO. 1,
January 2009
[14] Meng-Ju Chiang, Hsien-Shun Wu, Ching-Kuang C. Tzuang,” Design of
Synthetic Quasi-TEM Transmission Line for CMOS Compact Integrated
Circuit,” IEEE transactions on microwave theory and techniques, vol. 55, NO. 12,
December 2007
[15] Meng-Ju Chiang, Hsien-Shun Wu, Ching-Kuang C. Tzuang,” Prorogation
characteristics of CMOS Synthetic Transmission Line and Slow-Wave Inductor
on the Complementary Spiral-Shaped Electromagnetic Bandgap (EBG)
Shielding Plane,” Proceeding of Asia-Pacific Microwave Conference 2007
[16] Sen Wang, Kun-Hung Tsai, Meng-Ju Chiang, Hsien-Shun Wu, Ching-Kuang C.
Tzuang,” Super Compact Miniaturization of CMOS RFICs Using Synthetic
Quasi-TEM Transmission Lines,” IEEE MTT-S International Microwave
Workshop Series on Art of Miniaturization RF and Microwave Passive
Components 2008
[17] Meng-Ju Chiang, Hsien-Shun Wu, Ching-Kuang C. Tzuang,” Design of CMOS
Spiral Inductors for Effective Broadband Shielding,” Proceedings of the 36th
European Microwave Conference

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top