跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵郁涵
研究生(外文):Shao, Yu-Han
論文名稱:幾丁聚醣與鏈黴菌素複合抗菌於生物纖維重組薄膜儲存之應用
論文名稱(外文):Application of Combinational Antibacterial Effect of Chitosan and Natamycin on Storage of Bio-Cellulose Composite Films
指導教授:陳輝煌陳輝煌引用關係林世斌林世斌引用關係
指導教授(外文):Chen, Hui-HuangLin, Shih-Bin
口試委員:陳輝煌林世斌翁義銘蔡敏郎陳莉臻
口試委員(外文):Chen, Hui-HuangLin, Shih-BinWeng, Yih-MingTsai, Min-LangChen, Li-Chen
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:幾丁聚醣鏈黴菌素複合抗菌細菌性纖維素生物纖維重組薄膜
外文關鍵詞:chitosannatamycincombinational antibacterialbacterial cellulosebio-cellulose composite films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
以細菌性纖維及海藻酸鈉重組之濕態重組生物薄膜(wet fabricated bio-film, WFBF)水分含量高,於室溫下長期儲存易有細菌及黴菌滋生而變質。由於使用單一抗菌物質所需劑量較高,且抑菌種類有限,因此本研究使用天然抗菌劑幾丁聚醣(chitosan, Chi)及鏈黴菌素(natamycin, NAT),探討此兩種抗菌及抗黴劑複合對黑麴菌(Aspergillus niger, BCRC 30506)、金黃色葡萄球菌(Staphylococcus aureus, BCRC 10780) 、大腸桿菌(Escheriachia coli, BCRC 10675)及綠膿桿菌(Pseudomona aeruginosa, BCRC 11633)的抗黴、抗菌能力,並模擬市售濕態面膜儲存方式,將WFBF浸漬於複合抗菌液中,探討是否達到協同抗菌效應。由微孔盤及抑菌環實驗結果顯示,NAT對A. niger的最低抑制濃度(minimum inhibitory concentration, MIC)為375 µg/mL,但對S. aureus、E. coli及P.aeruginosa無抑菌效果;Chi對S. aureus、E. coli及P. aeruginosa MIC分別為3,200 µg/mL、6.25 µg/mL及100 µg/mL,但對A. niger無抑黴效果。將Chi與NAT複合添加200/188 µg/mL即對A. niger有抑菌效果,可降低兩種抗菌物質劑量且具有協同作用。為考慮抑制S. aureus,於薄膜儲存試驗中,將Chi劑量提升,發現於Chi與NAT複合濃度1,600/47 µg/mL對S. aureus及E. coli抑菌能力達168小時,且在同樣複合條件下,可抑制A. niger至少21天不生長且皆具有協同效果,然而對P. aeruginosa在Chi與NAT複合濃度1,600/188 µg/mL下,雖具抑菌能力但效果較不明顯。在物理性質方面,複合抗菌液對浸漬24小時的WFBF機械性質並無影響,水蒸氣通透速率下降,但長時間儲存後的質地有軟化趨勢。以此複合抗菌液儲存WFBF可降低兩種抗菌物質的使用劑量,具有取代化學防腐劑的潛力。
The bacteria and mold can be observed on wet fabricated bio-film (WFBF) contaning high moisture content during long-term storage at room temperature. But treatment with single antibacterial substance with narrow targets usually requires high-dose and can be a problem. Therefore, this study investigated the combinational antibacterial effect of natural antibacterial and antifungal substances, chitosan (Chi) and natamycin (NAT), against Aspergillus niger, Staphylococcus aureus, Escheriachia coli and Pseudomona aeruginosa. In addition, the WFBF made of bacterial cellulose (BC) was immersed in combinational antibacterial solution to simulate the storage conditions of wet masks in market, and the synergistic effect was investigated. According to the 96-well microplate and inhibition zone tests, the minimum inhibitory concentration (MIC) of NAT against A. niger was 375 µg/mL, but ineffective against S. aureus, E. coli and P. aeruginosa. The MIC of Chi against S. aureus, E. coli and P. aeruginosa were 3,200 µg/mL, 6.25 µg/mL and 100 µg/mL, respectively, but ineffective against A. niger. The Chi/NAT under 200/188 µg/mL combinational ratio exhibited effective inhibition against A. niger, which reduced the dosage of antimicrobial substances and showed synergistic effect. For inhibition of S. aureus, high-dose of Chi was required during storage. The Chi/NAT dosage at 1,600/47 µg/mL inhibited the growth of S. aureus and E. coli within 168 hrs. Moreover, this dosage of Chi/NAT effectively inhibited the growth of A. niger for at less 21 days and exhibited synergistic effect. However, such dosage of Chi/NAT (1,600/188 µg/mL) could not effectively inhibit the growth of P. aeruginosa. In physical properties, there was no difference in the mechanical properties of WFBF within 24 hr storage, but water vapor transmission rate decreased. The WFBF was softened as prolonged the storage. These results indicated the combinational antibacterial effect of Chi and NAT can lower the dosage of antibacterial substances, and possesses the potential for substituting chemical preservatives to extend shelf life.
中文摘要 I
Abstract II
謝誌 IV
目錄 V
表目錄 VIII
圖目錄 IX
附表目錄 XI
附圖目錄 XII
一、前言 1
二、文獻回顧 2
1. 細菌性纖維素(bacterial cellulose, BC) 2
1.1. BC的特性及其結構 2
1.2. BC來源及其生合成 2
1.3. BC複合材料之應用 3
1.4. 面膜及其保存 3
2. 天然抗菌物質 4
2.1. 鏈黴菌素(natamycin, NAT) 4
2.1.1. NAT的特性及其結構 4
2.1.2. NAT抑菌機制 4
2.1.3. NAT應用 5
2.2. 幾丁聚醣(chitosan, Chi) 5
2.2.1. Chi的結構及其特性 5
2.2.2. Chi抑菌機制 6
2.2.3.Chi應用 6
3. 複合抗菌 7
3.1. NAT複合其他抗菌物質之應用 7
3.2. Chi 複合其他抗菌物質之應用 7
3.3. NAT與Chi複合抗菌之應用 8
三、材料與方法 9
1. 實驗架構 9
2. 實驗材料與方法 10
2.1. 實驗菌株及培養方法 10
2.2. 實驗菌種保存 10
2.3. 天然抗菌物質製備 10
2.3.1. NAT製備 10
2.3.2. Chi製備 10
2.4. 最低抑菌濃度(minimum inhibitory concentration, MIC)測定 11
2.4.1. NAT MIC測定 11
2.4.2. Chi MIC測定 11
2.4.3. Chi及NAT複合抑黴試驗 11
2.4.4. 複合抑黴及抑菌效果評估 11
2.5. 濕態重組薄膜之製備 12
2.5.1. BC 前處理 12
2.5.2. 重組薄膜製備 12
2.6. 薄膜儲存試驗 12
2.7. 物理性質分析 13
2.7.1. 拉伸強度(tensile strength)與伸張率(elongation at break) 13
2.7.2. 水蒸氣穿透速率測定(Water Vapor Transmission Rate, WVTR) 13
2.7.3. 掃描電子顯微鏡(scanning electron microscope, SEM) 14
2.8. 統計分析 14
四、結果與討論 15
1. 選擇NAT及Chi適當之抑菌條件 15
1.1. NAT對A. niger、S. aureus、E. coli及P. aeruginosa抑黴及抑菌效果 15
1.2. Chi對A. niger之抑黴效果 15
1.3. Chi對S. aureus、E. coli及P. aeruginosa之抑菌效果 16
2. Chi及NAT對A. niger複合抑黴 16
3. 複合抑菌、抑黴之儲存試驗 17
3.1. Chi/NAT複合對S. aureus、E. coli及P. aeruginosa的影響 17
3.2. Chi/NAT複合對A. niger之抑黴效果 18
4. WFBF浸漬於不同抗菌溶液之物理性質分析 18
5. 細菌對浸漬於Chi/NAT複合抗菌液之WFBF細微結構變化 19
五、結論 20
六、參考文獻 21
七、表 34
八、圖 36
九、附表 57
十、附圖 58
王琇如。2006。膠原蛋白與幾丁聚醣複合材料的製備與活性分析研究。義守大學生物技術與化學工程系碩士論文。高雄。
包欣玉。2010。企劃新型面膜創造顧客價值之研究。東海大學企業管理系碩士論文。台中。
李宗洋。1997。以化學製備幾丁寡醣之探討幾丁聚醣膜之物性及其生物分解性。國立台灣海洋大學食品科學系碩士論文。基隆。
李佳晉、楊靜亭、周虹儒、陳佑汲、林恩仕。2008。化粧保養品新趨勢-天然有機化粧品及相關認證之探討。美容科技學刊。5(2): 716。
杜盈萱。2012。吸附抗菌物質的細菌性纖維素複合抗菌模式之研究。國立宜蘭大學食品科學系碩士論文。宜蘭。
林子雄。2006。不織布/幾丁聚醣薄膜複合敷料之製程技術及其性能評估。逢甲大學紡織工程系碩士論文。台中。
吳欣庭。2005。多重分解酵素生產菌種之篩選、鑑定與基本性質研究。朝陽科技大學應用化學系碩士論文。台中。
洪偉章、李金枝、陳榮秀。2004。化妝品原料及功能。藝軒圖書出版社。台北。
宮紹凱。2008。不同品系金黃色葡萄球菌與大腸桿菌對低分子幾丁聚醣敏感差異性及抗菌機制之初步研究。國立宜蘭大學食品科學系碩士論文。宜蘭。
袁景道。2002。真菌類的剋星-鏈黴菌素(Natamycin)。食品資訊。188: 7175。
張文碩。2012。改善細菌性纖維素複合薄膜重組技術以應用在創傷敷料之初步研究。國立宜蘭大學食品科學系碩士論文。宜蘭。
郭虹彣。2013。幾丁聚醣與溶菌酶的複合抑菌效果及在抗菌薄膜之應用。國立宜蘭大學食品科學系碩士論文。宜蘭。
張洳楣、林宜蓉、管麗珍、周秀冠。2007。市售化粧品微生物之調查。藥物食品檢驗局調查研究年報。25: 4045。
楊紓榕。2011。開發重組細菌性纖維素奈米複合薄膜及其物理性質之探討。國立宜蘭大學食品科學系碩士論文。宜蘭。
蕭卉羚。2011。調控細菌性纖維製備之奈米生物材料複合抗菌效果。國立宜蘭大學食品科學系碩士論文。宜蘭。
嚴嘉蕙。2006。化妝品概論。新文京開發出版文化公司。新北市。
Anitha, A., Sowmya, S., Kumar, P. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., Jayakumar, R. 2014. Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39(9): 1644-1667.
Balasundram, N., Sundram, K., Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1): 191-203.
ASTM. 2002. Standard test methods for tensile properties of thin plastic sheeting. American society for testing and materials D 882-02.
ASTM. 2002. Standard test methods for water vapor transmission of materials. American society for testing and materials E 96-00.
Basilico, J. C., Debasilico, M. Z., Chiericatti, C., Vinderola, C. G. 2001. Characterization and control of thread mould in cheese. Letters in Applied Microbiology, 32(6): 419-423.
Bastarrachea, L., Dhawan, S., Sablani, S. S. 2011. Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Engineering Reviews, 3(2): 79-93.
Bhatta, R. S., Chandasana, H., Rathi, C., Kumar, D., Chhonker, Y. S., Jain, G. K. 2011. Bioanalytical method development and validation of natamycin in rabbit tears and its application to ocular pharmacokinetic studies. Journal of Pharmaceutical and Biomedical Analysis, 54(5): 1096-1100.
Breidenstein, E. B., de la Fuente-Núñez, C., Hancock, R. E. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends in Microbiology, 19(8): 419-426.
Cagri, A., Ustunol, Z., Ryser, E. T. 2004. Antimicrobial edible films andcoatings. Journal of Food Protection, 67(4): 833-848.
Canfield, R. E. 1963. The amino acid sequence of egg white lysozyme. Journal of Biological Chemistry, 238(8): 2698-2707.
Castroa, C., Zuluaga, R., Pataux, J. L., Caro, G., Mondragon, I., Gana, P. 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84(1): 96-102.
Chang, J. Y., Li, L. 2002. The unfolding mechanism and the disulfide structures of denatured lysozyme. FEBS Lett, 511(1): 73-78.
Chen, Y. M., Chung, Y. C., Wang, L. W., Chen, K. T., Li, S. Y. 2002. Antibacterial properties of chitosan in waterborne pathogen. Journal of Environmental Science and Health, Part A, 37(7): 1379-1390.
Chou, T. C. 2010. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research, 70(2): 440-446.
Ciocan, I. D., Bara, I. 2007. Plant products as antimicrobial agents. Gentics and Molecular Biology, 8: 151-157.
Cowan, M. M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4): 564-582.
Cueva, C., Moreno-Arribas, M. V., Martín-Alvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodriguez, J. M., Bartolome, B. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 161(5): 372-382.
Cutler, S, Somerville, C. 1997. Cellulose synthesis: Cloning in silico. Current Biology, 7(2): R108-R111.
Dahman, Y. 2009. Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology, 9(9): 5105-5122.
Dalhoff, A. A., Levy, S. B. 2015. Does use of the polyene natamycin as a food preservative jeopardise the clinical efficacy of amphotericin B? A word of concern. International Journal of Antimicrobial Agents, 45(6): 564-567.
da Silva, M. A., Bierhalz, A. C. K., Kieckbusch, T. G. 2012. Modelling natamycin release from alginate/chitosan active films. International Journal of Food Science and Technology, 47(4): 740-746.
Davies, R. C., Neuberger, A., Wilson, B. M. 1969. The dependence of and lysozyme activity on pH and ionic strength. Biochimica et Biophysica Acta-Enzymology, 178(2): 294-305.
de Oliveira, T. M., de Fátima Ferreira Soares, N., Pereira, R. M., de Freitas Fraga, K. 2007. Development and evaluation of antimicrobial natamycin-incorporated film in gorgonzola cheese conservation. Packaging Technology and Science, 20(2): 147-153.
Duan, J., Park, S. I., Daeschel, M. A., Zhao, Y. 2007. Antimicrobial Chitosan‐Lysozyme (CL) Films and Coatings for Enhancing Microbial Safety of Mozzarella Cheese. Journal of Food Science, 72(9): M355-M362.
Dutta, P. K., Dutta, J., Tripathi, V. S. 2004. Chitin and chitosan: Chemistry, properties and application. Journal of Scientific and Industrial Research, 63(1): 20-31.
dos Santos Pires, A. C., de Fátima Ferreira Soares, N., de Andrade, N. J., da Silva, L. H. M., Camilloto, G. P., Bernardes, P. C. 2008. Development and evaluation of active packaging for sliced mozzarella preservation. Packaging Technology and Science, 21(7): 375-383.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top