跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:倪彥綉
研究生(外文):Ni, Yen-Hsiu
論文名稱:新型態樹豆漿對高脂飲食誘導小鼠肝臟脂質蓄積之影響
論文名稱(外文):Effect of novel pigeon pea milk on high fat diet induced hepatic lipid accumulation in mice
指導教授:吳思敬
指導教授(外文):Wu, She-Ching
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:111
中文關鍵詞:樹豆抗氧化活性抗發炎肝臟脂質蓄積
外文關鍵詞:Cajanus cajanAntioxidant activityAnti-inflammatoryHepatic lipid accumulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樹豆 (Cajanus cajan Linn. Millsp.),為豆科 (Leguminosae)、木豆屬 (Cajanus),英文名 pigeon pea,是原住民重要的傳統糧食作物之一。近年市面上已有不同豆類為基質之豆漿產品出現,如:黑豆漿、毛豆漿及紅豆漿等。樹豆臺東 3 號先前已被證實,具有具抗氧化、抗菌、抗腫瘤、抗病毒及調節血糖等效用。故本研究以樹豆臺東 3 號製成樹豆漿 (pigeon pea milk, PPM),探討樹豆漿之理化性質、抗氧化活性及機能性成分,並進一步以高脂飲食誘導小鼠肝臟脂質蓄積模式探討樹豆漿對肝損傷之保護潛力,最後再以感官品評分析新型態樹豆漿的消費者嗜好性。本研究實驗組別分為加熱組 (85℃、90℃、95℃ 及 121℃)、未加熱組及正對照組 (90℃ 黃豆漿組)。於理化性質部分,色澤分析結果顯示,樹豆漿組之 L 值分別為 85℃ 組 (37.05)、90℃ 組 (37.41)、95℃ 組 (36.79)、121℃ 組 (36.19) 及未加熱組 (58.48),而 90℃ 黃豆漿之 L 值為 82.44,不同加熱溫度之樹豆漿各組間亮度皆無明顯差異,但加熱會降低樹豆漿色澤亮度,且黃豆漿色澤亮度遠高於樹豆漿;pH 值測定結果顯示,樹豆漿組之 pH 值分別為 85℃ 組 (6.67)、90℃ 組 (6.82)、95℃ 組 (6.74)、121℃ 組 (6.72) 及未加熱組 (5.82),而 90℃ 黃豆漿之 pH 值為 6.50,樹豆漿組別與黃豆漿組 pH 值皆低於 7;可溶性固形物測定結果顯示,樹豆漿組別其可溶性固形物皆少於黃豆漿組。於抗氧化活性部分,以 90℃ 樹豆漿組具有最佳之 DPPH 自由基清除能力及還原力,且含有較高之總酚含量。進一步以高脂飲食誘導小鼠肝臟脂質蓄積模式下,評估 90℃ 樹豆漿是否具保護效應,動物實驗組別分為正常飲食組 (ND, normal diet)、高脂飲食誘發組 (HF, high-fat diet)、低劑量組 (HF+LPPM, 80 mg/kg bw)、中劑量組 (HF+MPPM, 250 mg/kg bw)、高劑量組 (HF+HPPM, 400 mg/kg bw) 及90℃ 黃豆漿正對照組 (HF+SM, 400 mg/kg bw)。於血清生化分析部分,結果顯示,經高劑量樹豆漿處理,能有效降低血清中 AST 及 ALT 酵素活性,相較於誘發組 AST 及 ALT 分別下降 29% 及 41%,同時也減少 TG 含量,與誘發組相比血清中 TG 含量下降 50%;於肝臟生化指數分析,小鼠肝臟中 Glutathione 及 Catalase 在低、中及高劑量樹豆漿處理下,具顯著性上升,與誘發組相比 Glutathione 分別上升 11%、12% 及 18%,Catalase 則分別上升 44%、48% 及 48%。小鼠肝臟中活性氧物質之生成,於高劑量樹豆漿處理下,與誘發組相比減少 17%,而脂質過氧化產物 MDA 含量於高劑量樹豆漿處理下,與誘發組相比減少 33%。此外,經高劑量樹豆漿處理後可明顯降低小鼠肝臟中發炎相關因子 NF-κB 及 NLRP3 蛋白表現量,與誘發組相比分別下降 1.84 及 1.50 倍,同時亦可降低 TNF-α、IL-1β 及 IL-6 發炎細胞激素含量,分別減少 44%、40% 及 19%,顯示樹豆漿具減緩肝細胞氧化性損傷,並具保護肝臟之效果。故後續再進一步分析小鼠肝臟中脂質生合成及 β-氧化作用相關蛋白表現,結果顯示,脂質合成相關蛋白 PPAR γ、SREBP-1、ACC1 及 FAS 蛋白表現量皆顯著地減少,相較於誘發組,於高劑量樹豆漿處理下,分別減少 1.71、1.28、2.50 及 2.09 倍,而促進 β-氧化作用之 CPT-1 蛋白表現量與誘發組相比則上升 1.99 倍。於嗜好性感官品評分析,結果顯示,樹豆漿風味尚可被接受,適口性仍有改善並調整製程之空間。綜合上述,樹豆漿與黃豆漿相比整體上具較好之抗氧化活性且具有特殊風味,其中以 90℃ 樹豆漿具較高抗氧化能力及含有較多的總酚含量,並於動物實驗證實其具有改善高脂飲食誘導之肝臟發炎及脂質蓄積的潛力,期能以此研究結果為基礎,進一步開發出具機能性且適合工業生產之樹豆漿產品。
Cajanus cajan Linn. Millsp. is Leguminosae, Cajanus, and pigeon pea. It is one of the most important traditional food crops of Taiwanese aborigines. In recent years, there have been soybean milk products based on different beans, such as black soybean milk, soybean milk, and red soybean milk. Cajanus cajan L.of NO. 3 has been demonstrated to possess numerous biological effects such as antioxidant, anti-bacterial, anti-tumor, anti-viral and glycemic control. The present study aimed to investigate the pigeon pea milk (PPM) was made from Cajanus cajan L.of NO. 3 to evaluate the physicochemical properties, antioxidant activity and functional components of soymilk, and explore PPM supple-mentation whether can prevent liver damage on high-fat diet induced mice model. Finally, the sensory evaluation of the consumer preference of new-type pigeon pea (PPM) is performed. The experimental group was divided into heating group (85°C, 90°C, 95°C and 121°C), unheated group and positive control group (90°C soy milk group). In the physicochemical properties, the results of color analysis showed that the L values of the PPM groups were 85°C group (37.05), 90°C group (37.41), 95°C group (36.79), 121°C group (36.19) and un-heated group (58.48), respectively, the L value of soybean milk at 90°C was 82.44, there was no significant difference in the brightness of the PPM at different heating temperatures. However, the brightness of PPM was reduced by heating, and the brightness of soybean milk was much higher than that of PPM; The pH value results showed that the pH values of the PPM groups were 85°C group (6.67), 90°C group (6.82), 95°C group (6.74), 121°C group (6.72) and unheated group (5.82), and 90°C of soybean milk was 6.50, respectively. The pH values of PPM groups and soybean milk group were all less than 7; the soluble solids results showed that the PPM groups had less soluble solids than the soy-bean milk group. In the antioxidant activity, the 90°C PPM group had the best DPPH free radical scavenging and reducing power, and contained higher total phenolic content. In order to evaluate whether the 90°C PPM has a prevent hepatic steatosis on high-fat diet induced mice model, the experimental group was divided into normal diet group (ND diet) and high-fat diet induction group (HF diet), low dose group (HF+LPPM, 80 mg/kg bw), middle dose group (HF+MPPM, 250 mg/kg bw), high dose group (HF+HPPM, 400 mg/kg bw) and 90°C soy milk positive control group (HF+SM, 400 mg/kg bw). In the serum biochemical analysis, the results showed that high-dose PPM treatment can effectively reduce serum AST and ALT enzyme levels, compared with the induced group, AST and ALT were decreased by 29% and 41%, respectively. TG content was also decreased, compared to HF group, the serum TG level was reduced by 50%. The glutathione and catalase in the liver of mice significantly increased in low, medium and high doses of PPM, compared with the HF group, glutathione increased 11%, 12% and 18%, respectively, and catalase increased by 44%, 48% and 48%, respectively. Compared with the HF group, the ROS content in the liver of mice was reduced by 33% at HF+HPPM doses. And the MDA content of lipid peroxidation product in the liver of mice was reduced by 33% at HF+HPPM doses. In addition, the treatment of high dose PPM significantly reduced the expression of NF-κB and NLRP3 protein in the liver of mice, which was 1.84 and 1.50 times lower than that in the induced group, and also decreased the levels of inflammatory cytokines in TNF-α, IL-1β and IL-6 were reduced by 44%, 40%, and 19%, respectively. These results indicated that PPM has the effect to alleviate oxidative damage to liver cells and protecting the liver. Therefore, further analysis of lipid synthesis and β-oxidation associated protein expression in mice livers revealed that the expression of lipid synthesis related proteins PPAR γ, SREBP-1, ACC1, and FAS were all significantly reduced. In the HF group, under HF+HPPM treatment, they decreased by 1.71, 1.28, 2.50, and 2.09 times, respectively. While the CPT-1 protein expression that promoted β-oxidation increased by 1.99 times compared with the HF group. Analysing the appraisal of the appetite and officials, the results showed that the PPM flavor was still acceptable, and the palatability was still improved and the manufacturing process was adjusted. In summary, the pigeon pea (PPM) has better antioxidant activity and special flavor than the soybean milk as a whole. And among which the 90°C PPM has higher antioxidant capacity and contains more total phenolic content than other groups, and it has the potential to improve liver inflammation and hepatic steatosis on high-fat diet induced mice model. Based on this research results, it can further develop functional and suitable for industrial production of pigeon pea products.
摘要 I
Abstract III
目錄 VI
圖次 IX
表次 X
前言 1
第一章 文獻回顧 2
一、 高脂飲食 3
二、 人體中的脂質代謝 4
(一) 脂蛋白 4
(二) 脂質代謝 9
(三) 內生性脂質生合成 11
三、 高血脂 (Hyperlipidemia) 及其相關疾病 14
高膽固醇血症 14
混合型高脂血症 14
(一) 代謝症候群 (Metabolic syndrome) 15
(二) 第二型糖尿病 (type 2 diabetes mellitus, T2DM) 15
(三) 心血管疾病 (Cardiovascular disease) 與動脈粥狀硬化 (Atherosclerosis) 16
(四) 非酒精性脂肪肝疾病 (Non-alcoholic fatty liver disease, NAFLD) 16
四、 飲食與體內發炎反應 20
五、 豆漿的飲食文化 23
六、 樹豆 24
(一) 概述 24
(二) 品種 25
(三) 活性成分與生理活性 27
(四) 樹豆台東 3 號之先前研究 35
第二章 材料與方法 38
一、 實驗材料 39
(一) 材料 39
(二) 藥品試劑 39
(三) 儀器設備 40
二、 實驗方法及步驟 41
(一) 樣品製備及萃取 41
(二) 理化性質分析 41
(三) 抗氧化能力與抗氧化成分分析 42
(四) 動物實驗 44
(五) 儲藏性試驗 51
(六) 感官品評 52
(七) 統計分析 52
第三章 結果與討論 53
一、 以不同溫度加熱之樹豆漿萃取率 54
二、 樹豆漿理化性質分析 54
三、 樹豆漿抗氧化能力與抗氧化成分分析 57
(一) 清除 DPPH 自由基能力 57
(二) 還原力 57
(三) 總抗氧化能力 58
(四) 花青素、總酚及類黃酮含量分析 62
四、 樹豆漿 (pigeon pea milk, PPM) 對高脂飲食誘發 ICR 小鼠肝臟脂質蓄積之評估 65
(一) 樹豆漿對高脂飲食誘導小鼠體重、攝食飲水量及食物利用率之影響 65
(二) 相對臟器重量及組織切片 69
(三) 血清生化指數分析 73
(四) 肝臟生化指數分析 77
1. 活性氧物質及脂質過氧化測定 77
2. 抗氧化物質及抗氧化酵素 81
3. 促發炎細胞激素 83
4. 樹豆漿對高脂飲食誘導 ICR 小鼠肝臟中發炎相關因子活化之影響 86
5. 樹豆漿對高脂飲食誘導 ICR 小鼠肝臟中脂質生合成之影響 90
6. 樹豆漿對高脂飲食誘導 ICR 小鼠肝臟中 β-oxidation 之影響 93
五、 儲藏性試驗之微生物檢測 95
六、 嗜好性感官品評 95
結論 98
參考文獻 100
附錄一 110
附錄二 111
王勝。2004。台東樹豆。行政院農業委員會。
江瑞拱。1999。多用途的資源植物~樹豆 (上)。農業世界雜誌,188:101-103。
行政院衛生福利部。國民健康署。2003。高血脂防治手冊-國人血脂異常診療及預防指引。
行政院衛生福利部。國民健康署。2008。2005-2008 台灣營養健康調查。
行政院衛生福利部。國民健康署。2018。2013-2016 年國民營養健康狀況變遷調查及 107 年最新版「每日飲食指南」。
行政院衛生福利部。統計處。2018。106年國人死因統計結果分析。
林建森。1999。台灣茶類滋味品質快速分析之研究。國立中興大學食品科學研究所碩士論文。
林筑盈。2016。樹豆依品種及發芽時間探討其在體外之抗氧化以及對醣類分解酵素及蛋白質醣化反應之抑制作用。東海大學食品科學系碩士論文。
林筱晴。2012。樹豆對酒精誘導肝細胞損傷之保護效應及其生理活性成分之研究。國立嘉義大學食品科學系研究所碩士論文。
食力專刊。2016。食安事件成豆漿成長契機。
陳振義、王勝、葉茂生。(2012)。樹豆新品種-臺東1 號、2 號、3 號之育成. 台東區農業改良場研究彙報。22:31-52。
陳振義。2011。行政院農業委員會臺東區農業改良場。樹豆新品種介紹。臺東區農業專訊。76:18-20。
劉振軒、何逸儒、祝平次、王琇真。1996。組織病理染色技術與圖鑑。16-18。
賴奕瑄。2011。樹豆機能性及其納豆產品之開發。國立嘉義大學食品科學系研究所碩士論文。
戴汎蓁。2010。樹豆調節高脂飲食誘發倉鼠高血脂症之探討。國立嘉義大學食品科學系研究所碩士論文。
Akihisa, T., Nishimura, Y., Nakamura, N., Roy, K. and Ghosh, P. 1992. Sterols of Cajanus cajan and three other leguminose seed. Phytochemistry, 31: 1765-1768.
Akinloye, O.A. and Olaniyi, M.O. 2011. Hepatoprotective effect of Cajanus cajan on tis-sue defense system in D-galactosamine-induced hepatitis in rats. Türk Biyokimya Dergisi [Turkish Journal of Biochemistry-Turk J Biochem], 36 (3): 237-241.
Akojie, F.O. and Fung, L.W. 1992. Antisickling activity of hydroxybenzonic acid in Ca-janus cajan. Planta Medica, 58: 317-320.
Aksoy, L., Kolay, E., Ağılönü, Y., Aslan, Z. and Kargıoğlub, M. 2013. Free radical scav-enging activity, total phenolic content, total antioxidant status, and total oxidant sta-tus of endemic Thermopsis turcica. Saudi Journal of Biological Sciences, 20 (3): 235-239.
Amalraj, T. and Ignacimuthu, S. 1998. Hypoglycemic activity of Cajanus cajan (seeds) in mice. Indian Journal of Experimental Biology, 36: 1032-1033.
Amengual, J., Petrov, P., Bonet, M.L., Ribot, J. and Palou, A. 2012. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. The International Journal of Biochemistry& Cell Biology, 44: 2019-2027.
Araya, J., Rodrigo, R., Videla, L.A., Thielemann, L., Orellana, M., Pettinelli, P. and Poniachik, J. 2004. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clini-cal Science, 106: 635-43.
Arnao, M.B., Cano, A. and Acosta, M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73 (2): 239-244.
Aviram, M. 1993. Modified forms of low density lipoprotein and atherosclerosis. Athero-sclerosis, 98 (1): 1-9.
Bacon, B.R., Farahvash, M.J., Janney, C.G. and Neuschwander-Tetri, B.A. 1994. Nonal-coholic steatohepatitis: an expanded clinical entity. Gastroenterology, 107 (4): 1103-1109.
Bashiardes, S., Shapiro, H., Rozin, S., Shibolet, O. and Elinav, E. 2016. Non-alcoholic fatty liver and the gut microbiota. Molecular Metabolism, 5 (9): 782-794.
Bastian, H. and Johannes, A.S. 2013. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 12: 86.
Bennett, M.R. 1999. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovascular Research, 41: 361-368.
Berlanga, A., Guiu-Jurado, E., Porras, J.A. and Auguet, T. 2014. Molecular pathways in nonalcoholic fatty liver disease. Clinical and Experimental Gastroenterology, 7: 221-239.
Borengasser, S.J., Lau, F., Kang, P., Blackburn, M.L., Ronis, M.J., Badger, T.M. and Shankar, K. 2011. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning. PLOS ONE 6, e24068.
Bruce, C., Chouinard, R.A.J. and Tall, A.R. 1998. Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport. Annual Review of Nutri-tion, 18: 297-330.
Busch, C.J. and Binder, C.J. 2017. Malondialdehyde epitopes as mediators of sterile in-flammation. Biochimica Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1862 (4): 398-406.
Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. 2016. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism clinical and experimental, 65: 1038-1048.
Chalasani, N., Younossi, Z., Lavine, J.E., Diehl, A.M., Brunt, E.M., Cusi, K., Charlton, M. and Sanyal, A.J. 2012. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Dis-eases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 55 (6): 2005-2023.
Chen, G.H., Luo, Z., Chen, F., Shi, X., Song, Y.F., You, W.J. and Liu, X. 2017. PPARα, PPAR γ and SREBP-1 pathways mediated waterborne iron (Fe)-induced reduction in hepatic lipid deposition of javelin goby Synechogobius hasta. Comparative Bio-chemistry and Physiology Part C: Toxicology & Pharmacology, 197: 8-18.
Chen, Y.L., Xiaod, C.H., Hu, Z.H., Liu, X.H., Liu, Z., Zhang, W.N. and Zhaoa, X.J. 2017. Dynamic lipid profile of hyperlipidemia mice. Journal of Chromatography B, 1055-1056: 165-171.
Choi, J.S., Islam, M.N., Ali, M.Y., Kim, E.J., Kim, Y.M. and Jung, H.A. 2014. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food Chem Toxicol, 64: 27-33.
Cooksey, C.J., Dahiya, J.S., Garratt, P.J. and Strange, R.N. 1980. Two novel stil-bene-2-carboxylicacid phytoalexins from Cajanus cajan. Phytochemistry, 21: 2935-2938.
Cordner, Z.A. and Tamashiro, K.L. 2015. Effects of high-fat diet exposure on learning & memory. Physiology & Behavior, 152: 363-371.
Costa-Rodrigues, J., Pinho, O. and Monteiro, P.R.R. 2018. Can lycopene be considered an effective protection against cardiovascular disease? Food Chemistry, 245: 1148-1153.
Csak, T., Ganz, M., Pespisa, J., Kodys, K., Dolganiuc, A. and Szabo, G. 2011. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 54 (1): 133-144.
Cui, C.X., Deng, J.N., Yan, L., Liu, Y.Y., Fan, J.Y., Mu, H.N., Sun, H.Y., Wang, Y.H. and Han, J.Y. 2017. Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. Journal of Ethnopharmacology, 208: 24-35.
Dahiya, J.S., Strange, R.N., Bilyard, K.G., Cooksey, C.J. and Garratt, P.J. 1984. Two iso-prenylated isoflavone phytoalexins from Cajanus cajan. Phytochemistry, 23: 871-874.
Day, C.P. and James, O.F. 1998. Steatohepatitis: a tale of two "hits"? Gastroenterology, 114 (4): 842-845.
Della Pepa, D., Vetrani, C., Lombardi, G., Bozzetto, L., Annuzzi, G. and Rivellese, A.A. 2017. Isocaloric Dietary Changes and Non-Alcoholic Fatty Liver Disease in High Cardiometabolic Risk Individuals. Nutrients, 9 (10): 1065.
Deubert, K.H. 1978. A Rapid Method for the Extraction and Quantitation of Total Antho-cyanin of Cranberry Fruit. Journal of Agricultural and Food Chemistry, 26: 1452-1453.
Dieplinger, H., Zechner, R. and Kostner, G.M. 1985. The in vitro formation of HDL2 dur-ing the action of LCAT: the role of triglyceride-rich lipoproteins. The Journal of Li-pid Research, 26 (3): 273-82.
Dixon, L.J., Berk, M., Thapaliya, S., Papouchado, B.G. and Feldstein, A.E. 2012. Caspa-se-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Laboratory Investigation, 92 (5): 713-723.
Farrell, G.C. and Larter, C.Z. 2006. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology, 43: S 99-S 112.
Fernández, A.E., Peña, I.Z., Llano, D.G., Bartolomé, B. and Arribas, M.V.M. 2017.The role of wine and food polyphenols in oral health. Trends in Food Science & Tech-nology, 69: 118-130.
Fuleki, T. and Francis, F. 1968. Quantitative Methods for Anthocyanins. Journal of Food Science, 33: 266-274.
Gheibi, S., Kashfi, K. and Ghasemi, A. 2017. A practical guide for induction of type-2 di-abetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & Phar-macotherapy, 95: 605-613.
Gong, J., Fang, K., Dong, H., Wang, D., Hu, M. and Lu, F. 2016. Effect of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes: A meta-analysis. Journal of Ethnopharmacology, 194 (24): 260-268.
Guo, H., Saravanakumar, K. and Wang, M.H. 2018. Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from tubers of Stachys affinis. Bio-catalysis and Agricultural Biotechnology, 15: 235-239.
Gus'kova, R.A., Ivanov, I.I, Kol'tover, V.K., Akhobadze, V.V. and Rubin, A.B. 1984. Per-meability of bilayer lipid membranes for superoxide (O2-.) radicals. Biochimicaet Biophysica Acta, 778 (3): 579-85.
Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J.,Camporez, J.P., Shulman, G.I., Gordon, J.I., Hoffman, H.M. and Flavell, R.A. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 482 (7384): 179-185.
Hu, M. 1994. Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology, 233: 380-385.
Ingham, J.L. 1976. Induced isoflavonoids from fungus-infected stems of pigeon pea (Ca-janus cajan). Z Naturforsch C, 31: 504-508.
Julve, J., Martín-Campos, J., Escolà-Gil, J. C. and Blanco-Vaca, F. 2016. Chylom crons:Advances in biology, pathology, laboratory testing, and therapeutics. Clinica Chimica Acta, 455: 134-148.
Botham, K.M. and Mayes, P.A. 2015. Lipid Transport & Storage. Harper’s Illustrated Bi-ochemistry, Chapter 25.
Kajikawa, S., Imada, K., Takeuchi, T., Shimizu, Y., Kawashima, A., Harada, T. and Mi-zuguchi, K. 2011. Eicosapentaenoic acid attenuates progression of hepatic fibrosis with inhibition of reactive oxygen species production in rats fed methionine- and choline-deficient diet. Digestive Diseases and Sciences, 56 (4): 1065-1074.
Kima, S., Honga, J., Jeon, R. and Kim, H.S. 2011. Adzuki bean ameliorates hepatic lipo-genesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease. Nutrition Research, 36 (1): 90-100.
Kobyliak, N., Virchenko, O., Falalyeyeva, T., Kondro, M., Beregova, T., Bodnar, P., Shcherbakov, O., Bubnov, R., Caprnda, M., Delev, D., Sabo, J., Kruzliak, P., Rodrigo, L., Opatrilova, R. and Spivak, M. 2017. Cerium dioxide nanoparticles possess an-ti-inflammatory properties in the conditions of the obesity-associated NAFLD in rats. Biomedicine & Pharmacotherapy, 90: 608-614.
Kubola, J. and S. Siriamornpun. 2011. Phytochemicals and antioxidant activity of differ-ent fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinen-sis Spreng). Food Chemistry, 127 (3): 1138-1145.
Kumarappan, C.T., Thilagam, E. and Mandal, S.C. 2012. Antioxidant activity of poly-phenolic extracts of Ichnocarpus frutescens. Saudi Journal of Biological Sciences, 19 (3): 349-355.
Kwan, B.C.H., Kronenberg, f., Beddhu, S. and Cheung, A.K. 2007. Lipoprotein Metabo-lism and Lipid Management in Chronic Kidney Disease. Journal of the American Society of Nephrology, 18: 1246-1261.
Lee, S.W., Lee, T.U., Yang, S.S., Peng, Y.C., Yeh, H.Z. and Chang, C.S. 2017. The associa-tion of non-alcoholic fatty liver disease and metabolic syndrome in a Chinese popu-lation. Hepatobiliary & Pancreatic Diseases International, 16 (2): 176-180.
Levonen, A.L., Hill, B.G., Kansanen, E., Zhang, J. and Darley-Usmar, V.M. 2014. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radical Biology & Medicine, 71: 196-207.
Lodhi, I.J., Wei, X. and Semenkovich, C.F. 2011. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends in Endocrinology and Metabolism January, 22 (1): 1-8.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193 (1): 265-275.
Majumder,D., Das, A. and Saha, C., 2017. Catalase inhibition an anti cancer property of flavonoids: A kinetic and structural evaluation. International Journal of Biological Macromolecules, 104: 929-935.
Lynes, M.D. and Widmaier, E.P. 2011. Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat di-et. Life Sciences, 88 (9-10): 384-391
Meir, S., Kanner, J., Akiri, B. and Hadas, S.P.J. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43: 1813-1819.
Mouralidarane, A., Oben, J.A. and Soeda, J. 2011. Pathophysiology and clinical manage-ment of nonalcoholic fatty liver disease. Medicine, 39: 592-596.
Mustafa, C.,Demet, G.Y.,Mehmet, A.E., Gulen, A. and Seren, O. 2014. The Role of Inter-leukin-6 and Interleukin-8 Gene Polymorphisms in Non-Alcoholic Steatohepatitis. Hepatitis Monthly, 14 (12): e24635.
Nantitanon, W., Yotsawimonwat, S. and Okonogi, S. 2010. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Science and Technology, 43 (7): 1095-1103.
Nordestgaard, B.G., Chapman, M.J., Ray, K., Borén, J., Andreotti, F., Watts,G.F., Ginsberg, H., Amarenco, P., Catapano A., Descamps Edward Fisher, O.S., Kovanen, P.T., Kuiv-enhoven, J.A., Lesnik, P., Masana, L., Reiner, Z., Taskinen, M.R., Tokgözoglu, L. and Tybjærg-Hansen, A. 2010. Lipoprotein (a) as a cardiovascular risk factor: current status. European Heart Journal, 31 (23): 2844-2853.
Olatunji, L.A. and Soladoye, A.O. 2007. Increased magnesium intake prevents hyper-lipidemia and insulin resistance and reduces lipid peroxidation in fructose-fed rats. Pathophysiology, 14 (1): 11-15
Ong, T.H., Yu, N., Meenashisundaram, G.K. and Schaller, B. 2017. Insight into cytotoxi-city of Mg nanocomposites using MTT assay technique. Materials Science and En-gineering: C, 78: 647-652.
Oyaizu, M. 1986. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44 (6): 307-315.
Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Görgün, C., Glimcher, L.H. and Hotamisligil, G.S. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 306 (5695): 457-61.
Özdemir, M. and Deveres, O., 2000. Analysis of colour development during roasting of hazelnuts using response surface methodology. Journal of Food Engineering, 45: 17-24.
Palomer, X., Pizarro-Delgado, J., Barroso, E. and Vázquez-Carrera, M. 2018. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends in Endocrinology & Metabolism, 29: 3.
Paradies, G., Paradies, V., Ruggiero, F.M. and Petrosillo, G. 2014. Oxidative stress, cardi-olipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World Journal of Gastroenterology, 20 (39): 14205-14218.
Park, H., Liu, Y., Kim, H.S. and Shin, J.H. 2016. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutrition Research, 36 (1): 57-64.
Phillips, M.C. 2014. Molecular mechanisms of cellular cholesterol efflux. The Journal of biological chemistry, 289 (35): 24020–24029.
Preston, N.W. 1977. Cajanone: an antifungal isoflavanone from Cajanus cajan. Phyto-chemistry, 16: 143-144.
Rader, D.J. and Hobbs, H.H. 2007. Disorders of Lipoprotein Metabolism. Greenspan’s Basic & Clinical Endocrinology, Chapter 19.
Reaven, G.M. 1988. Role of Insulin Resistance in Human Disease.Banting Lecture 1988. Diabetes, 37: 1595-1607
Remmeriea, A. and Scott, C.L. 2018. Macrophages and lipid metabolism. Cellular Im-munology, 1-16 (Available online).
Retondario, A., Fernandes, R., Rockenbach, G., Alves, M.A., Bricarello, L.P., Trindade, E.B.S.M. and Vasconcelos, F.A.G. 2018. Selenium intake and metabolic syndrome: A systematic review. Clinical Nutrition, 1-12.
Rong, S., Hu, X., Zhao, S., Zhao, Y., Xiao, X., Bao, W. and Liu, L. 2018. Procyanidins ex-tracted from the litchi pericarp ameliorate atherosclerosis in Apo E knockout mice: their effects on nitric oxide bioavailability and oxidative stress. Biomedicine & Pharmacotherapy, 97: 1639-1644
Shimada, K., Fujikawa, K. Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Ag-ricultural and Food Chemistry, 40 (6): 945-948.
Singh, S., Mehta, A. and Mehta, P. 2011. Hepatoprotective activity of cajanus cajan against carbon tetrachloride induced liver damage. International Journal of Pharma-cy and Pharmaceutical Sciences, 3: 146-147
Singh, R.B., Mengi, S.A., Xu, Y.J., Arneja, A.S. and Dhalla, N.S. 2002. Pathogenesis of atherosclerosis: A multifactorial process. Experimental and clinical cardiology, 7 (1): 40-53
Singleton, V., R. Orthofer, and R. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagen. Methods in Enzymology, 299: 152-178.
Strowig, T., Henao-Mejia, J., Elinav, E. and Flavell, R. 2012. Inflammasomes in health and disease. Nature, 481: 278-86.
Su, C.W., Chen, C.Y., Li, Y., Long, S.R., Massey,W., Kumar, D.V., Walker, W.A. and Shi, H.N. 2018. Helminth infection protects against high fat diet-induced obesity via in-duction of alternatively activated macrophages. Scientific reports, 8: 4607.
Tilg, H. and Moschen, A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 52 (5): 1836-1846.
Vecchione, G., Grasselli, E., Voci, A., Baldini, F., Grattagliano, I., Wang, D.Q., Porincasa, P. and Vergani, L. 2016. Silybin counteracts lipid excess and oxidative stress in cul-tured steatotic hepatic cells. World J. Gastroenterol: WJG 22, 6016–6026.
Weber .F and Larsen L.R. 2017. Influence of fruit juice processing on anthocyanin stabil-ity. Food Research International, 100 (3): 354-365.
Willnow, T.E., Sheng, Z., Ishibashi, S. and Herz, J. 1994. Inhibition of hepatic chylomi-cron remnant uptake by gene transfer of a receptor antagonist. Science, 264: 1471-1474.
Zhang, X.L., Wu, Y.F., Wang, Y.S., Wang, X.Z., Piao, C.H., Liu, J.M. Liu, Y.L. and Wanga, Y.H. 2017. The protective effects of probiotic-fermented soymilk on high-fat di-et-induced hyperlipidemia and liver injury. Journal of Functional Foods, 30: 220-227.
Yano, H., Oyanagi, E., Kato, Y., Samejima, Y., Sasaki, J. and Utsumi, K. 2010. L-Carnitine is essential to β-oxidation of quarried fatty acid from mitochondrial membrane by PLA2. Molecular and Cellular Biochemistry, 342 (1-2): 95-100.
Yu, C., Chen, Y., Cline, G.W., Zhang, D., Zong, H., Wang, Y., Bergeron, R., Kim, J.K., Cushman, S.W., Cooney, G.J., Atcheson, B., White, M.F., Kraegen, E.W. and Shul-man, G.I. 2002. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry, 277 (52): 50230-50236.
Zacarias, J.L., Mufiozledo, F. and Harcuch, W. 1992. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry, 97 (6): 493-7.
Zamora, R. and Hidalgo, F.J. 2016. Lipoproteins. Encyclopedia of Food and Health, 544-549.
Zhang, D.M., Li, Y., Cheang, W.S., Lau, C.W., Lin, S.M., Zhang, Q.L., Yao, N., Wang, Y., Wu, X., Huang, Y. and Ye, W.C. 2012. Cajaninstilbene acid relaxes rat renal arteries: roles of Ca2+ antagonism and protein kinase C-dependent mechanism. PLOS ONE, 7(10): 11-13.
Zhang, D.Y., Zu, Y.G., Fu, Y.J., Luo, M., Wang, W., Gu, C.B., Zhao, C.J., Jiao, J. and Ef-ferth, T. 2012. Enzyme pretreatment and negative pressure cavitation extraction of genistein and apigenin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.] and the evaluation of antioxidant activity. Industrial Crops and Products, 37 (1): 311-320.
Zhang, X.L., Wu, Y.F., Wang, Y.S., Wang, X.Z., Piaoab, C.H., Liu, J.M., Liu, Y.L. and Wang, Y.H. 2017. The protective effects of probiotic-fermented soymilk on high-fat diet-induced hyperlipidemia and liver injury. Journal of Functional Foods, 30: 220-227.
Zhao, J., Ma, D., Luo, M., Wang, W., Zhao, C., Zu, Y., Fu, Y. and Wink, M. 2014. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main ac-tive compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Research International, 56: 243-251.
Zhou, D. and Pan, Y.X. 2015. Pathophysiological basis for compromised health beyond generations: role of maternal high-fat diet and low-grade chronic inflammation. Journal of Nutritional Biochemistry, 26: 1-8.
Zhou, Y., Ding, Y.L., Zhang, J.L., Zhang, P., Wang, J.Q. and Li, Z.H. 2018. Alpinetin im-proved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through im-proving oxidative stress, inflammatory response and lipid metabolism. Biomedicine & Pharmacotherapy, 97: 1397-1408.
Zhua, S.Y., Jiang, N., Yang, J., Tu, J., Zhou, Y., Xiao, X. and Dong, Y. 2018. Silybum marianum oil attenuates hepatic steatosis and oxidative stress in high fat diet-fed mice. Biomedicine & Pharmacotherapy, 100: 191-197.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊