跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇昱銘
研究生(外文):Yu-ming Su
論文名稱:利用溶膠凝膠法合成製備燒結促進劑摻雜於氧化釓摻雜氧化鈰電解質之材料特性與電性能研究
論文名稱(外文):Materials Characteristics and Electric Performance of Gd2O3 doped CeO2 with the doping of Sintering Aids by Sol-Gel Methods
指導教授:郭俞麟郭俞麟引用關係
指導教授(外文):Yu-lin Kuo
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:169
中文關鍵詞:固態氧化物燃料電池溶膠凝膠法氧化釓摻雜氧化鈰
外文關鍵詞:solid oxide fuel cellssol-gel methodGd2O3 doped CeO2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將提出利用溶膠凝膠法摻雜氧化矽(SiOX)、氧化鈦(TiOX)並作為燒結促進劑(Sintering aids)於氧化釓摻雜氧化鈰(GDC)固態氧化物電解質,尋求達到降低燒結溫度,發展成為實用電解質材料改質之技術。製備後之粉體材料性質判定則以X光繞射儀(XRD)及比表面積分析儀(BET)分析其結晶結構及粉體尺寸與利用掃瞄式電子顯微鏡 (SEM)觀察其表面型態,密度及電性能則利用阿基米德法及交流阻抗分析儀來測量。
在氧化矽或氧化鈦摻雜於GDC電解質系統之鍛燒製程,顯示氧化矽或氧化鈦摻雜濃度為0~3.0 wt.%時之電解質粉末無第二相的產生。XRD結果顯示隨著氧化矽或氧化鈦摻雜濃度增加,其晶格常數會隨之減少,主要是由於矽離子或鈦離子其離子半徑小於釓離子及鈰離子所導致。從XRD及BET之分析, DBET及DXRD之數值顯示其晶粒尺寸及顆粒尺寸會隨著氧化矽或氧化鈦摻雜濃度增加而隨之減少,其晶粒尺寸及顆粒尺寸範圍在20~45 nm之間。TGA及DTA結果顯示無明顯的重量變化,且為穩定之相結構。從SEM結果顯示,當氧化矽或氧化鈦摻雜濃度高於1 wt.%時,其粉體會有團聚之現象產生。
在氧化矽或氧化鈦摻雜於GDC電解質系統之燒結製程,XRD結果顯示氧化矽或氧化鈦摻雜濃度為0~3.0 wt.%時無第二相產生。由SEM分析及阿基米德法得知,氧化矽或氧化鈦摻雜濃度為0.25~0.5 wt.%可減少燒節溫度及提高相對密度。從相對密度比較來看,在燒結溫度1500 ℃,持溫5小時之未摻雜的GDC電解質其相對密度約為91.99 %,而氧化矽或氧化鈦摻雜濃度為0.25 wt.%之GDC電解質其相對密度分別為91.21 %、92.01 %。此結果顯示,摻雜微量的燒結促進劑於電解質仍保有相當程度之緻密性。
在電性能方面,摻雜微量的氧化矽或氧化鈦於GDC電解質比起未摻雜的GDC電解質具有較高之導電性。當燒結溫度為1400 ℃,持溫5小時,在氧化矽或氧化鈦摻雜濃度為0.25 wt.%時,具有較高之導電性分別為2.84×10-2 S/cm及5.12×10-2 S/cm (量測溫度為800 ℃),其值高於未摻雜的GDC電解質之2.65×10-2 S/cm (量測溫度為800 ℃)。
本研究結果顯示添加燒結促進劑於GDC電解質中能降低固態氧化物電解質緻密過程中所需之燒結溫度,且摻雜微量的燒結促進劑可提高其相對密度,其導電性比起傳統的YSZ較適合做為固態氧化物燃料電池之電解質。
In this study, we proposed sol-gel method to prepare gadolinia-doped ceria (GDC) solid electrolytes with the addition of SiOX or TiOX as the sintering aids. Materials characteristics of the prepared and calcined electrolyte samples were identified by X-ray diffraction (XRD) for crystalline structure, Specific surface area analyzer (BET) for particle size and scanning electron microscopy (SEM) for surface morphology of powders. The electric performance and density were measured by Archimedes method and AC impedance method.
For the calcined process of SiOX-doped or TiOx-doped GDC systems, the results showed that the prepared electrolyte powder had no additional impurity phases as the dopant concentrations of SiOX or TiOx were 0~3.0 wt.%. XRD results indicated lattice constants of prepared powder decreased as the dopant concentrations of SiOX or TiOx increased, because Si4+ or Ti4+ has smaller ionic radius than Gd3+ and Ce4+. For XRD and BET analyses, DBET and DXRD values showed particle sizes and crystallite sizes decreased as the dopant concentrations of SiOX or TiOx increased. The ranges of particle sizes and crystallite sizes were 22~55 nm and 20~45 nm. TGA and DTA spectra showed no obvious weight loss, and had a stable phase structure at higher temperatures (900°C). From SEM results, the agglomeration behavior of electrolyte powders for excessive SiOX-doped or TiOx-doped concentration (> 1 wt.% ) was obviously observed.
For the sintered process of SiOX-doped or TiOx-doped GDC systems, the sintered sample without additional impurity phases were obtained as the dopant concentrations of SiOX or TiOX were 0~3.0 wt.%. By SEM analysis and Archimedes method, doped 0.25~0.5 wt.% SiOX or TiOX could reduced the sintering temperature and increased the relative density. The relative density of undoped GDC pellet under the sintering process of 1500 °C and 5 hours was around 91.99 %, while the relative density of 0.25 wt.% SiOX-doped or TiOX-doped GDC pellets under the sintering process of 1400 °C and 5 hours were 91.21 % and 92.01 %. The results showed that the electrolyte with small doped concentration of SiOX or TiOX could achieve to a higher densification of electrolytes for solid oxide fuel cells (SOFCs).
For the electric characteristic, the small concentration of SiOX-doped or TiOx-doped GDC pellets had the higher conductivity than pure GDC pellets. As sintering at 1400 °C for 5 hours, the highest total conductivities were obtained in 0.25 wt.% SiOX-doped GDC pellet with σ800 °C = 2.84×10-2 S/cm and 0.25 wt.% TiOX-doped GDC pellet with σ800 °C = 5.12×10-2 S/cm, as compared to the undoped GDC with a total conductivity of 2.65×10-2 S/cm at 800 °C .
It could be concluded that the preparation of adding sintering aids in GDC electrolytes was successful to lower the sintering temperature of the densification for solid oxide electrolytes, and small concentration of sintering aids doped GDC pellets with the higher relative density and the comparable conductivity can be used as solid electrolyte layers for SOFCs system as compared to the well-known YSZ.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖索引 IX
表索引 XVII
第一章 緒論 1
1.1 前言 1
1.2 燃料電池簡介 2
1.3 動機 6
第二章 文獻回顧 8
2.1 固態氧化物燃料電池(SOFCs) 8
2.1.1固態氧化物燃料電池簡介 8
2.1.2固態氧化物燃料電池之發電原理 8
2.2 氧離子導體電解質材料 13
2.2.1鈣鈦礦結構電解質(Perovskite-Structured Electrolytes) 13
2.2.2螢石結構電解質(Fluorite-Structured Electrolytes) 18
2.3 電解質缺陷機構 25
2.3.1 晶體缺陷結構 26
2.3.2 晶界缺陷結構 27
2.4 燒結促進劑(Sintering Aids) 29
2.5 固態電解質粉末合成製備法 31
2.6 交流阻抗分析法之原理簡介 39
第三章 實驗步驟與程序 43
3.1 實驗材料與方法 43
3.1.1實驗材料 43
3.1.2實驗步驟 43
3.2 實驗設備 45
第四章 結果與討論 53
4.1 以溶膠凝膠法製備燒結促進劑(SiOX)摻雜固態電解質粉體 53
4.1.1氧化矽(SiOX)摻雜GDC粉體之材料分析 54
4.2 燒結體分析 56
4.2.1 氧化矽(SiOx)摻雜GDC電解質之材料分析 56
4.3 電性能分析 59
4.3.1 氧化鈦(TiOX)摻雜GDC電解質之材料分析 60
4.4 以溶膠凝膠法製備燒結促進劑(TiOX)摻雜固態電解質粉體 96
4.4.1氧化鈦( TiOX)摻雜GDC粉體之材料分析 96
4.5 燒結體分析 98
4.5.1 氧化鈦(SiOx)摻雜GDC電解質之材料分析 98
4.6 電性能分析 100
4.6.1 氧化鈦(TiOX)摻雜GDC電解質之電性能分 101
第五章 結論 130
第六章 參考文獻 134
1.黃鎮江,“燃料電池”,全華科技圖書 (2004)。
2.羅文基、黃炯,“高級中學生活科技”,龍騰文化 (2001)。
3.http://www.opec.org/home/
4.J. Larminie and A. Dicks, “Fuel Cell Systems Explained” Chichester, West Sussex : Wiley (2003) 2ed.
5.衣寶廉,“燃料電池-高效、環保的發電方式”,五南圖書 2003。
6.Chunshan Song, “Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century,” Catalysis Today 77 (2002) 17-49.
7.N. Q. Minh, “Ceramics Fuel Cells,” J. Am. Ceram. Soc., 76 (3) (1993) 563~588.
8.http://www.seca.doe.gov
9.J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi and K. Hirano, “Kinetics of The Electrode Reaction at the CO-CO2, Porous Pt/Stabilized Zirconia Interface,” Solid State Ion., 53 (1992) 126-134.
10.R. Peng, C. Xia, X. Liu, D. Peng, G. Meng, “Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing,” Solid State Ion., 152-153 (2002) 561-565.
11.W. Z. Zhu and S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells,” Mater. Sci. Eng., A362 (2003) 228-239.
12.S. P. Jiang and S. H. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mater. Sci., (2004) 4405-4439.
13.A. Ringuede, J. A. Labrincha and J. R. Frade, “A combustion synthesis method to obtain alternative cermet materials for SOFC anodes,” Solid State Ion., 141~142 (2001) 549-557.
14.D. Simwonis, F. Tietz and D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells,” Solid State Ion., 132 (2000) 241-251.
15.B. C. H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃,” Solid State Ion., 129 (2000) 95-110.
16.Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, “Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction,” Solid State Ion., 170 (2004) 9-15.
17.R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, “Development of solid-oxide fuel cells that operate at 500 ℃,” J. Electrochem. Soc., 1999, 146 (4) 1273-1278.
18.E. P. Murray, T. Tsai and S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode,” Nature, Vol 400, 12 Aug 1999
19.http://www.risoe.dk, Risø/DTU, Denmark.
20.J. Fleig, “Solid oxide fuel cell cathodes: polarization mechanisms and modeling of the electrochemical performance,” Annu. Rev. Mater. Res., (2003) 361-82.
21.S. Wang, T. Kato, S. Nagata, T. Kaneko, N. Iwashita, T. Honda, and M. Dokiya, “Electrodes and performance analysis of a ceria electrolyte SOFC,” Solid State Ion., 152-153 (2002) 477-484.
22.M. Mehring, “From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds,” Coord. chem. rev., 251 (2007) 974.
23.P. Shuk, H.D. Wiemhofer, U. Guth, W. Gopel, and M.Greenblatt, “Oxide ion conducting electrolytes based on Bi2O3,” Solid State Ion., 89 (1996) 179-196.
24.A. Laarif and F. Theobald, “The lone pair concept and the conductivity of bismuth oxides Bi2O3,”Solid State Ion., 21 (1986) 183-193.
25.Y.-M. Chiang, D. Birnie and W. D. Kingery, “Physical Ceramics,” New York : J. Wiley (1997).
26.S. P. S. Badwal, “Stability of solid oxide fuel cell components,” Solid State Ion., 143 (2001) 39-46.
27.H. Yohiro, K. Eguchi and H. Arai, “Ionic conduction and microstructure of the ceria-strontia system,” Solid State Ion., 21 (1986) 37-47.
28.T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116 (1994) 3801-3803.
29.K. Huang and J. B. Goodenough, “A solid oxide fuel cell based on Srand Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer,” Journal of Alloys and Compounds, 303-304 (2000) 454-464.
30.W. Weppner, in: O. Yamamoto, M. Dokia, H. Tagawa (Eds.), “Proceedings of the International Symposium on Solid Oxide Fuel Cells,” Science House, Tokyo, Japan (1990)
31.T. Ishihara, H. Matsuda and Y. Takita, “Effect of rare earth cations doped for La stie on the oxide ionic conductivity of LaGaO3-based perovskite type oxide,” Solid State Ion., 79 (1995) 147-151.
32.C. J. Howard, B. J. Kennedy, and B. C. Chakoumakos, “Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition,” J. phys., Condens. matter., 12(4)349-365, 2000.
33.陳誦英,王峰雲,鄭淑芬,“固體氧化物燃料電池(SOFC)研究進展和發展動態”,財團法人中技社。
34.M. Yashima, M. Kakihana and M. Yoshimura, “Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application,” Solid State Ion., 86/88 (1996) 1131-1149.
35.R. A. Miller, J. L. Smialek, and R. G. Garlik, in “Science and Technology of Zirconia”, A. H. Heuer and L. W. Hobbs (Eds.), Advances in Ceramics, vol. 3, Am. Ceram. Soc., Columbus, OH, (1981) 241.
36.E. Koch and C. Wagner, “The mechanism of ionic conduction in solid salts on the basis of the disorder idea. I.,” Z. Phys. Chem., B38 (1937) 295-324.
37.F. Kroger and H. J. Vink, in “Solid State Physics”, Vol. 3, F. Seitz and D. Turnbull (Eds.), Academic Press, New York, (1965) 304.
38.E. C. Subbarao, “Solid Electrolytes and Their Applications,” Plenum New York (1980) 109.
39.E. C. Subbarao and H. S. Maiti, “Solid Electrolyte with oxygen ion conduction,” Solid State Ion., 11 (1984) 317.
40.黃炳照,鄭銘堯,“固態氧化物燃料電池之進展”,化工技術,第111期,民國91年6月pp.135。
41.J. F. Baumard and P. Abelard, in“Science and Technology of Zirconia Ⅱ”, N. Claussen, M. Ruhle and A. H. Heuer (Eds.), Am. Ceram. Soc., Columbus, OH, (1984) 555.
42.V. Butler, C. R. A. Catlow, B. E. F. Fender and J. H. Harding, “Dopant ion radius and ionic conductivity in cerium dioxide,” Solid State Ion., 8 (1983) 109.
43.馬志芳,梁廣川,梁金生,“鹼土金屬氧摻雜氧化鈰基電解質材料中的晶格缺陷”,物理化學學報,21(6) (2005) 633。
44.J. A. Kilner and R. J. Brook,“A study of oxygen ion conductivity in doped nonstoichiometric oxides,”Solid State Ion., 6 (1982) 237.
45.Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda and N. Imanishi, “Electrical Conductivity of the ZrO2 – Ln2O3 (Ln = lanthanides),” Solid State Ion, 121 (1999) 133.
46.S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) 5981-6000.
47.M. Mogensena, N. M. Sammes, G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ion., 129 (2000) 63–94.
48.V. V. Kharton, F.M.B. Marques, A. Atkinson, “Transport properties of solid oxide electrolyte ceramics: a brief review”, Solid State Ion., 174 (2004) 135– 149.
49.H. L. Tuller and A. S. Nowick, “Doped Ceria as a Solid Oxide Electrolyte”, J. Electrochem. Soc., 122 (1975) 255-259.
50.T. Ishihara, H. Matsude and Y. Takita, in “Ionic and Mixed Conducting Ceramics”, T. A. Ramanarayanan, W. L. Worrell and H. L. Tuller (Eds.), The Electrochemical Society Proceedings, Pennington, NJ, PV92-12, (1994) 85.
51.M. Godickemeier and L. J. Gauckler, “Engineering of Solid Oxide Fuel Cells with Ceria-Based Electrolytes,” J. Electrochem. Soc., 145 (1998) 417.
52.X. Guo, R. Waser, “Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria”, Progress in Materials Science, 51 (2006) 151-210.
53.J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, “Improvement of Grain-Boundary Conductivity of 8 mol % Yttria-Stabilized Zirconia by Precursor Scavenging of Siliceous Phase,” J. Electrochem. Soc., 147 (2000) 2822.
54.J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, and D.-Y. Kim, “Scavenging of Siliceous Grain-Boundary Phase of 8-mol%-Ytterbia-Stabilized Zirconia without Additive,” J. Am. Ceram. Soc., 84 (2001) 2734.
55.J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, D.-Y. Kim, “Precursor scavenging of the resistive grain-boundary phase in 8 mol yttria-stabilized zirconia: Effect oftrace concentrations of SiO2,” J. Mater. Res., 16 (2001) 2377-2383.
56.S. P. S. Badwal and J. Drennan, “Grain boundary resistivity in Y-TZP materials as a function of thermal history,”J. Mater. Sci., 24 (1989) 88-96.
57.A. E. Hughes and B. A. Sexton., “XPS study of an intergranular phase in yttria-zirconia,” J. Mater. Sci., 24 (1989) 1057.
58.A. E. Hughes, S. P. S. Badwal, “Impurity segregation study at the surface of yttria-zirconia electrolytes by XPS,” Solid State Ion., 40/41 (1990) 312-315.
59.S. P. S. Badwal and J. Drennan, “Evaluation of conducting properties of yttria-zirconia wafers,” Solid State Ion., 40/41 (1990) 869.
60.S. P. S. Badwal, F. T. Ciacchi, R. H. J. Hannink, “Relationship between phase stability and conductivity of yttria tetragonal zirconia,” Solid State Ion., 40/41 (1990) 882.
61.S. P. S. Badwal, F. T. Ciacchi, M. V. Swain and V. Zelizko, “Creep deformation and the grain-boundary resistivity of Tetragonal Zirconia Polycrystalline Materials,” J. Am. Ceram. Soc., 73 (8) (1991) 2505-2507.
62.A. E. Hughes, S. P. S. Badwal, “Impurity and yttrium segregation in yttria-tetragonal zirconia,” Solid State Ion., 46 (1991) 265.
63.S. P. S. Badwal, “Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity,”Solid State Ion., 52 (1992) 23.
64.S. P. S. Badwal, A. E. Hughes, “The effects of sintering atmosphere on impurity phase formation and grain boundary resistivity in Y2O3-fully stabilized ZrO2,” J. Eur. Ceram. Soc., 10 (1992) 115-122.
65.S. P. S. Badwal, S. Rajendran, “Effect of micro- and nano-structures on the properties of ionic conductors,” Solid State Ion., 70/71 (1994) 83-95.
66.F. T. Ciacchi, K. M. Crane, S. P. S. Badwal, “Evaluation of commercial zirconia powders forsolid oxide fuel cells,” Solid State Ion., 73 (1994) 49-61.
67.M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, G. Kostorz, H. Hofmann, O. Frei, “Effect of intergranular glass films on the electrical conductivity of 3Y-TZP,” J. Mater. Res., 9 (1994) 1228-1240.
68.L. Heyne In: E. Beniere, C. R. A. Catlow, editors. Mass transport in solids. New York: Plenum Press; 1983. p. 425.
69.A. J. Burggraaf, A. J. A. Winnubst. In: Nowotny J, Dufour L-C, editors. Surface and near-surface chemistry of oxide materials. Amsterdam: Elsevier Science; 1988. p. 449.
70.D. Bingham, P. W. Tasker, A. N. Cormack,“Simulated grain-boundary structures and ionic conductivity in tetragonal zirconia,” Philos Mag. A, 60 (1989) 1-14.
71.X. Guo, “Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: Role of the space-charge layers,” Solid State Ion., 81 (1995) 235-242.
72.X. Guo, “Space-charge conduction in yttria and alumina codoped-zirconia 1,” Solid State Ion., 96 ( 1997) 247-254.
73.X. Guo, “Size dependent grain-boundary conductivity in doped zirconia,” Comput. Mater. Sci., 20 (2001) 168-176.
74.X. Guo, J. Maier, “Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis ,” J. Electrochem. Soc., 148 (2001) E121.
75.X. Guo, W. Sigle, J. Fleig, J. Maier, “Role of space charge in the grain boundary blocking effect in doped zirconia,” Solid State Ion., 154–155 (2002) 555.
76.J.-C. M’Peko, D.L. Spavieri, M. F. de Souza, “In situ characterization of the grain and grain-boundary electrical responses of zirconia ceramics under uniaxial compressive stresses,” Appl. Phys. Lett., 81 (2002) 2827.
77.J.-C. M’Peko, M. F. de Souza, “Ionic transport in polycrystalline zirconia and Frenkel’s space-charge layer postulation,” Appl. Phys. Lett., 83 (2003) 737.
78.X. Guo, “Roles of Alumina in Zirconia for Functional Applications,” J. Am. Ceram. Soc., 86 (2003) 1867-1873.
79.X. Guo, Z. Zhang, “Grain size dependent grain boundary defect structure: case of doped zirconia,” Acta. Mater., 51 (2003) 2539-2547.
80.X. Guo, Y. Ding, “Grain Boundary Space Charge Effect in Zirconia,” J. Electrochem. Soc., 151 (2004) J1.
81.X. Guo, S. Mi, R. Waser, “Nonlinear Electrical Properties of Grain Boundaries in Oxygen Ion Conductors: Acceptor-Doped Ceria,” Electrochem. Solid-State Lett., 8 (2005) J1.
82.A. Tschöpe, E. Sommer, R. Birringer, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments,” Solid State Ion., 139 (2001) 255-265.
83.A. Tschöpe, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model,” Solid State Ion., 139 (2001) 267-280.
84.S. Kim, J. Maier, “On the Conductivity Mechanism of Nanocrystalline Ceria,” J. Electrochem. Soc., 149 (10) (2002) J73.
85.X. Guo, W. Sigle, J. Maier, “Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity,” J. Am. Ceram. Soc., 86 (2003) 77-87.
86.V. Butler, C. R. A. Catlow, B. E. F. Fender, “The defect structure of anion deficient ZrO2,” Solid State Ion., 5 (1981) 539-542.
87.W. C. Mackrodt, P. M. Woodrow, “Theoretical Estimates of Point Defect Energies in Cubic Zirconia,” J. Am. Ceram. Soc., 69 (1986) 277-280.
88.A. Dwivedi, A. N. Cormack, “A computer simulation study of the defect structure of calcia-stabilized zirconia,” Philos Mag. A, 61 (1990) 1-22.
89.J. P. Goff, W. Hayes, S. Hull, M. T. Hutchings, K. N. Clausen, “Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures, ” Phys. Rev. B, 59 (1999) 14202.
90.J. A. Kilner, R. J. Brook, “A study of oxygen ion conductivity in doped non-stoichiometric oxides,” Solid State Ion., 6 (1982) 237-252.
91.P. S. Manning, J. D. Sirman, R. A. De Souza, J. A. Kilner, “The kinetics of oxygen transport in 9.5 mol % single crystal yttria stabilised zirconia,” Solid State Ion., 100 (1997) 1-10.
92.Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai, “Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system,” Solid State Ion., 121 (1999) 133-139.
93.T. H. Etsell, Spyridon N. Flengas, “Electrical properties of solid oxide electrolytes,” Chem. Rev., 70 (1970) 339-376.
94.H. Inaba, H. Tagawa, “Ceria-based solid electrolytes,” Solid State Ion., 83 (1996) 1-16.
95.M. Mogensen, N. M. Sammes, G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ion., 129 (2000) 63-94.
96.M. A. Panhans, R. N. Blumenthal, “A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide,” Solid State Ion., 60 (1993) 279-298.
97.L. J. Gauckler, M. Gödickemeier, D. Schneider, “Nonstoichiometry and Defect Chemistry of Ceria Solid Solutions,” J. Electroceram., 1–2 (1997) 165-172.
98.L. Minervini, M. O. Zacate, R. W. Grimes, “Defect cluster formation in M2O3-doped CeO2,” Solid State Ion., 116 (1999) 339.
99.H. L. Tuller, A. S. Nowick, “Doped Ceria as a Solid Oxide Electrolyte,” J. Electrochem. Soc., 122 (1975) 255.
100.H. L. Tuller, A. S. Nowick, “Small polaron electron transport in reduced CeO2 single crystals,” J. Phys. Chem. Solids, 38 (1977) 859-867.
101.H. L. Tuller, A. S. Nowick, “Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals,” J. Electrochem. Soc., 126 (1979) 209.
102.I. K. Naik, T. Y. Tien, “Small-polaron mobility in nonstoichiometric cerium dioxide,” J. Phys. Chem. Solids, 39 (1978) 311-315.
103.J. Maier, “On the Conductivity of Polycrystalline Materials,” Ber. Bunsenges. Phys. Chem., 90 (1986) 26-33.
104.J. Maier, “Ionic conduction in space charge regions,” Prog. Solid State Chem., 23 (1995) 171.
105.R. Waser, R. Hagenbeck, “Grain boundaries in dielectric and mixed-conducting ceramics,” Acta Mater., 48 (2000) 797.
106.T. H. Hölbling, R. Waser, “Simulation of the charge transport across grain boundaries in p-type SrTiO3 ceramics under dc load: Debye relaxation and dc bias dependence of long-term conductivity,” J. Appl. Phys., 91 (2002) 3037.
107.D. A. Blom and Y.-M. Chiang, “Interfacial Segregation in Ionic Conductors: Ceria,” Mater. Res. Soc. Symp. Proc., 458 (1997) 127-132.
108.Y. Lei, Y. Ito, N. D. Browning, T. J. Mazanec, “Segregation Effects at Grain Boundaries in Fluorite-Structured Ceramics,” J. Am. Ceram. Soc., 85 (2002) 2359-2363.
109.M. Aoki, Y.-M. Chiang, I. Kosacki, L. J. R. Lee, H. L. Tuller, Y. Liu, “Solute segregation and grain-boundary impedance in high-purity stabilized zirconia,” J. Am. Ceram. Soc., 79 (1996) 1169-1180.
110.S. Kim, J. Maier, “Partial electronic and ionic conduction in nanocrystalline ceria: role of space charge,” J. Eur. Ceram. Soc. 24 (2004) 1919-1923.
111.E. B. Lavik, I. Kosacki, H. L. Tuller, Y.-M. Chiang, J. Y. Ying, “Nonstoichiometry and Electrical Conductivity of Nanocrystalline CeO2-X,” J. Electroceram. 1 (1997) 7-14.
112.T. S. Zhang, J. Ma, H. Cheng, S. H. Chan, “Ionic conductivity of high-purity Gd-doped ceria solid solutions,” Mater. Res. Bull., 41 (2006) 563–568.
113.H. J. Avila-Paredes, S. Kim, “The effect of segregated transition metal ions on the grain boundary resistivity of gadolinium doped ceria: Alteration of the space charge potential,” Solid State Ion., 177 (2006) 3075-3080.
114.T. S. Zhang, J. Ma, L. B. Kong, S. H. Chan, P. Hing, J. A. Kilner, “Iron oxide as an effective sintering aid and a grain boundary scavenger for ceria-based electrolytes,” Solid State Ion., 167 (2004) 203–207.
115.T. S. Zhang, L. B. Kong, Z. Q. Zeng, H.T. Huang, P. Hing, Z.T. Xia, J. Kilner, “Sintering behavior and ionic conductivity of Ce0.8Gd0.2O1.9 with a small amount of MnO2 doping,” J. Solid State Electrochem., 7 (2003) 348-354.
116.C. Kleinlogel, L.J. Gauckler, “Sintering and properties of nanosized ceria solid solutions,” Solid State Ion., 135 (2000) 567–573.
117.G. S. Lewis, A. Atkinson, B. C. H. Steele, J. Drennan, “Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria,” Solid State Ion., 152– 153 (2002) 567-573.
118.W. Zajac, L. Suescun, K. Swierczek, J. Molenda, “Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions,” Journal of Power Sources, In press (2009).
119.D. Pérez-Coll, P. Núñez, J. C. C. Abrantes, D. P. Fagg, V. V. Kharton, J. R. Frade, “Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO,” Solid State Ion., 176 (2005) 2799-2805.
120.M. C. Martin, M. L. Mecartney, “Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size,” Solid State Ion., 161 (2003) 67-79.
121.E. Yu. Pikalova, V. I. Maragou , A. K. Demin, A. A. Murashkina, P. E. Tsiakaras, “Synthesis and electrophysical properties of (1−x)Ce0.8Gd0.2O2−δ+xTiO2 (x=0–0.06),” Solid State Ion., 179 (2008) 1557-1561.
122.J.-S. Lee, K.-H. Choi, B.-K. Ryu, B.-C. Shin, I.-S. Kim, “Effects of alumina additions on sintering behavior of gadolinia-doped ceria,” Ceram. Int., 30 (2004) 807-812.
123.G. B. Jung, T. J. Huang, M. H. Huang, C. L. Chang, “Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method,” J. Mater. Sci., 36 (2001) 5839-5844.
124.http://www.chemat.com, Chemat Technology, Inc.
125.P.-S. Cho, S. B. Lee, D.-S. Kim, J.-H. Lee, D.-Y. Kim, and H.-M. Park, “Improvement of Grain-Boundary Conduction in Gadolinia-Doped Ceria by the Addition of CaO,” Electrochemical and Solid-State Letters, 9 (9) A399-A402 (2006).
126.Y. H. Cho, P.-S. Cho, G. Auchterlonie, D. K. Kim, J.-H. Lee, D.-Y. Kim, H.-M. Park, J. Drennan, “Enhancement of grain-boundary conduction in gadolinia-doped ceria by the scavenging of highly resistive siliceous phase,” Acta Materialia, 55 (2007) 4807-4815.
127.E. Barsoukov and J. R. Macdonald, “Impedance spectroscopy : theory, experiment, and applications,” N.J. : Wiley-Interscience (2005) 2ed.
128.A. J. Bard and L. R. Faulkner, “Electrochemical methods fundamentals and applications,” Wiley-Blackwell (2000) 2ed.
129.呂維明、戴怡德,“粉體體粒徑量測技術”,高立圖書 (1998)
130.粉體工學會,粒子徑計測技術,日刊工業新聞社,東京 (1994)。
131.J. M. Coulson and J. F. Richardson, Chemical Engineering, Volume Two, Third Edition, Pergamon Press, Oxford (1978).
132.J. E. Bauerle, “Study of solid electrolyte polarization by a complex admittance method,” J. Phys. Chem. Solids, 30 (1969) 2657-2670.
133.I. Kosacki and H. U. Anderson, “Microstructure-property relationship in nanocrystalline oxide thin films,” Ionics, 6 (2000) 294-311.
134.I. Kosacki and H. U. Anderson,“Grain boundary effects in nanocrystalline oxide thin films,”in Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., vol. 4, New York 2001, 3609-3617.
135.T. Suzuki, I. Kosacki and H. U. Anderson, “Microstructure–electrical conductivity relationships in nanocrystalline ceria thin films,” Solid State Ion., 151 (2002) 111-121.
136.T. S. Zhang, J. Ma, Y. Z. Chen, L. H. Luo, L. B. Kong, S. H. Chan, “Different conduction behaviors of grain boundaries in SiO2-containing 8YSZ and CGO20 electrolytes,” Solid State Ion., 177 (2006) 1227-1235.
137.D. R. Lide, “CRC handbook of Chemistry and Physics:Ed 84th 2003-2004,” CRC press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top