跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許禮汎
研究生(外文):Li-Fan Hsu
論文名稱:貝他類澱粉蛋白在大鼠溶小體膜上所產生的效應
論文名稱(外文):Effect of amyloid beta peptide on rat lysosomal membranes
指導教授:葉思芳
指導教授(外文):Hsu-Fang Chou
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:65
中文關鍵詞:溶小體貝他類澱粉蛋白
外文關鍵詞:lysosome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
貝他類澱粉蛋白是造成阿茲海默症形成的一個主要原因。在阿茲海默症的早期可以發現溶小體有一些不正常的改變,貝他類澱粉蛋白也會對阿茲海默症患者產生一些氧化壓力的傷害。這個實驗是要研究貝他類澱粉蛋白1-40與我們純化出來的大鼠腦中的溶小體 ( 純度60~75倍 ) 之間是否有什麼直接反應。當貝他類澱粉蛋白濃度由10 μM一直提升到100 μM所產生活性氧化物的量是隨著濃度呈現劑量效應,但是卻無法在溶小體上產生顯著的脂質過氧化效應。另一方面,在相同濃度下,50 μM的銅離子所產生的脂質過氧化反應比貝他類澱粉蛋白造成的脂質過氧化有顯著的增加。
不管在有或沒有雙氧水作用的情況下,10 μM或者50 μM的貝他類澱粉蛋白加上銅離子與銅離子本身所造成的溶小體脂質過氧化相比沒有顯著的改變,甚至有些許的下降,這說明了在我們實驗的情況下,銅離子是造成溶小體脂質過氧化的主因,而在in vitro的情況下貝他類澱粉蛋白1-40無法造成大鼠腦中溶小體顯著的脂質過氧化增加。
Accumulation of amyloid beta peptide (Aβ) has been proposed to be one key event in the pathogenesis of AD. Disfunction of lysosomes is the earliest change observed in AD patients, and thought to be caused by oxidative damage induced by Aβ. The present study was designed to examine the direct interaction between Aβ40 and lysosomal membrane by using isolated lysosomes, which were purified from rat brain with 60-75 fold purity. Aβ at concentration of 10 to 100 μM caused an increase in reactive oxygen species (ROS) generation and the stimulatory effect was dose dependent. On the other hand, increased Aβ concentration from 10 to 100 μM failed to show any effect on lipid peroxidation of lysosomes, and Cu2+ at 50 μM caused a significant increase in lipid peroxidation as compared to the control or Aβ treatment.
With or without H2O2, the combination of Cu2+ and Aβ40 at 10 or 50 μM caused a similar or slightly lower degree of lipid peroxidation compared with Cu2+ itself, suggesting that Cu2+ is the major stimulator on lipid peroxidation of lysosomes in our experimental condition. And Aβ40 cannot induce a significant increase of lipid peroxidation on rat brain lysosome in vitro.
中文摘要……………………………………………………………………………1
Abstract……………………………………………………………………………2
緒論…………………………………………………………………………………3
阿茲海默症…………………………………………………………………………3
貝他類澱粉蛋白與阿茲海默症……………………………………………………4
貝他類澱粉蛋白的聚集、毒性、以及氧化壓力與銅離子的關係………………5
阿茲海默症與溶小體………………………………………………………………7
實驗目的……………………………………………………………………………9
材料與方法…………………………………………………………………………10
由鼠腦中分離出溶小體……………………………………………………………10
分離出鼠腦中與溶小體重量相近的胞器…………………………………………10
蛋白質濃度測定……………………………………………………………………12
β-Hexosaminidase 活性測定…………………………………………………… 12
Succinate dehydrogenase 活性測定……………………………………………14
Catalase 活性測定 …………………………………………………………… 15
以貝他類澱粉蛋白及銅離子產生活性氧化物……………………………………16
貝他類澱粉蛋白1-40 ( Aβ40 ) 合成……………………………………………16
貝他類澱粉蛋白1-40 ( Aβ40 ) 前處理…………………………………………17
SDS-PAGE 膠體電泳測定 …………………………………………………………17
Coomassie Brilliant Blue 染色法 …………………………………………19
活性氧化物(ROS) 生成量測定……………………………………………………20
測貝他類澱粉蛋白、銅離子、雙氧水在溶小體產生的脂質過氧化……………21
Malondialdehyde ( MDA )生成量測定 ………………………………………21
統計分析方法………………………………………………………………………22
實驗結果……………………………………………………………………………23
由鼠腦中分離出最純的溶小體……………………………………………………23
分離出鼠腦中與溶小體重量相近的胞器 ………………………………………23
溶小體酵素 ( β-Hexosaminidase ) 活性測定 ……………………………… 24
粒線體酵素 ( Succinate Dehydrogenase ) 活性測定 ………………………25
過氧化體酵素 ( Catalase ) 活性測定 ………………………………………25
選定溶小體fraction ………………………………………………………… 26
貝他類澱粉蛋白1-40經過前處理之後的結構觀察 …………………………… 27
測量活性氧化物的量以及溶小體膜的脂質過氧化………………………………28
測定雙氧水(H2O2)的活性氧化物程度以及使溶小體膜
脂質過氧化的程度…………………………………………………………………28
利用貝他類澱粉蛋白使溶小體膜脂質過氧化……………………………………29
測量貝他類澱粉蛋白與銅離子的比例與活性氧化物生成量的關係……………30
利用貝他類澱粉蛋白和銅離子觀察活性氧化物生成與
溶小體脂質過氧化的情形…………………………………………………………31
降低貝他類澱粉蛋白與銅離子的濃度後,
溶小體脂質過氧化的情形…………………………………………………………31
加入雙氧水與貝他類澱粉蛋白和銅離子一起作用………………………………32
討論…………………………………………………………………………………34
結論…………………………………………………………………………………38
參考資料……………………………………………………………………………39
圖表…………………………………………………………………………………44
圖一、Total activity and specific activity of β-hexosaminidase … 44
圖二、Total activity and specific activity of
succinate dehydrogenase ………………………………………………………45
圖三、Total activity and specific activity of catalase………………46
表一、由鼠腦中純化出溶小體 …………………………………………………47
圖四、前處理過後的Aβ40 的電泳圖………………………………………… 48
圖五、不同濃度雙氧水所產生的活性氧化物程度………………………………49
圖六、不同濃度雙氧水所造成的溶小體脂質過氧化……………………………49
表二、Aβ所生成的活性氧化物程度及對溶小體膜所造成的脂質過氧化 …… 50
圖七、圖八、 Aβ和Cu2+的比例不同所產生的活性氧化物程度……………… 51
圖九、Aβ、Cu2+與Aβ.Cu2+ 的活性氧化物生成測定……………………………52
圖十、10 μM Aβ和Cu2+的活性氧化物生成反應…………………………………53
圖十一、10 μM Aβ和Cu2+對溶小體膜的脂質過氧化反應………………………53
表三、Aβ、Cu2+以及雙氧水在活性氧化物及MDA產生的比較………………… 54
表四、1 mM、5 mM 雙氧水和Aβ、Cu2+ 對溶小體的脂質過氧化實驗…………55
表五、不同濃度的雙氧水以及Aβ和Cu2+ 對溶小體脂質過氧化的影響……… 56
圖十二、Aβ40、雙氧水和Cu2+ 對溶小體脂質過氧化的比較………………… 57
附錄一、縮寫檢索表………………………………………………………………58
附錄二、在膜上的澱粉前驅蛋白…………………………………………………59
附錄三、α-、β-、γ -分泌酶在澱粉前驅蛋白上所切割的位置………………60
附錄四、銅離子與貝他類澱粉蛋白結合時所形成的結合物……………………61
1.Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. 1986. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913-4917.
2.Alonso, A.D., Grundke-Iqbal, I., Barra, H.S., and Iqbal, K. 1997. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A 94:298-303.
3.Michaelis, M.L., Ansar, S., Chen, Y., Reiff, E.R., Seyb, K.I., Himes, R.H., Audus, K.L., and Georg, G.I. 2005. {beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J Pharmacol Exp Ther 312:659-668.
4.Wong, C.W., Quaranta, V., and Glenner, G.G. 1985. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci U S A 82:8729-8732.
5.Hardy, J. 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci 20:154-159.
6.Mazur-Kolecka, B., Dickson, D., and Frackowiak, J. 2006. Induction of vascular amyloidosis-beta by oxidative stress depends on APOE genotype. Neurobiol Aging 27:804-814.
7.Saido, T.C., and Iwata, N. 2006. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer's disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 54:235-253.
8.Pinnix, I., Musunuru, U., Tun, H., Sridharan, A., Golde, T., Eckman, C., Ziani-Cherif, C., Onstead, L., and Sambamurti, K. 2001. A novel gamma -secretase assay based on detection of the putative C-terminal fragment-gamma of amyloid beta protein precursor. J Biol Chem 276:481-487.
9.Esler, W.P., and Wolfe, M.S. 2001. A Portrait of Alzheimer Secretases-New Features and Familiar Faces. Science 293:1449-1454.
10.Selkoe, D.J., Podlisny, M.B., Joachim, C.L., Vickers, E.A., Lee, G., Fritz, L.C., and Oltersdorf, T. 1988. Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci U S A 85:7341-7345.
11.Stein, T.D., Anders, N.J., DeCarli, C., Chan, S.L., Mattson, M.P., and Johnson, J.A. 2004. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707-7717.
12.Tamagno, E., Bardini, P., Guglielmotto, M., Danni, O., and Tabaton, M. 2006. The various aggregation states of beta-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med 41:202-212.
13.Serpell, L.C. 2000. Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16-30.
14.Bitan, G., Tarus, B., Vollers, S.S., Lashuel, H.A., Condron, M.M., Straub, J.E., and Teplow, D.B. 2003. A molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization. J Am Chem Soc 125:15359-15365.
15.Tabner, B.J., El-Agnaf, O.M., Turnbull, S., German, M.J., Paleologou, K.E., Hayashi, Y., Cooper, L.J., Fullwood, N.J., and Allsop, D. 2005. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280:35789-35792.
16.Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., et al. 1999. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111-37116.
17.Subramaniam, R., Koppal, T., Green, M., Yatin, S., Jordan, B., Drake, J., and Butterfield, D.A. 1998. The free radical antioxidant vitamin E protects cortical synaptosomal membranes from amyloid beta-peptide(25-35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer's disease. Neurochem Res 23:1403-1410.
18.Opazo, C., Huang, X., Cherny, R.A., Moir, R.D., Roher, A.E., White, A.R., Cappai, R., Masters, C.L., Tanzi, R.E., Inestrosa, N.C., et al. 2002. Metalloenzyme-like activity of Alzheimer's disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem 277:40302-40308.
19.Barnham, K.J., Ciccotosto, G.D., Tickler, A.K., Ali, F.E., Smith, D.G., Williamson, N.A., Lam, Y.H., Carrington, D., Tew, D., Kocak, G., et al. 2003. Neurotoxic, redox-competent Alzheimer's beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 278:42959-42965.
20.Tabner, B.J., Turnbull, S., El-Agnaf, O.M., and Allsop, D. 2002. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free Radic Biol Med 32:1076-1083.
21.Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., et al. 1999. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609-7616.
22.Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., and Markesbery, W.R. 1998. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 158:47-52.
23.Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E., and Bush, A.I. 2000. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 75:1219-1233.
24.Puglielli, L., Friedlich, A.L., Setchell, K.D., Nagano, S., Opazo, C., Cherny, R.A., Barnham, K.J., Wade, J.D., Melov, S., Kovacs, D.M., et al. 2005. Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. J Clin Invest 115:2556-2563.
25.Curtain, C.C., Ali, F., Volitakis, I., Cherny, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Masters, C.L., Bush, A.I., and Barnham, K.J. 2001. Alzheimer's disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466-20473.
26.Kagan, B.L., Hirakura, Y., Azimov, R., Azimova, R., and Lin, M.C. 2002. The channel hypothesis of Alzheimer's disease: current status. Peptides 23:1311-1315.
27.Ba, F., Pang, P.K., and Benishin, C.G. 2004. The role of Ca2+ channel modulation in the neuroprotective actions of estrogen in beta-amyloid protein and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cytotoxic models. Neurochem Int 45:31-38.
28.Curtain, C.C., Ali, F.E., Smith, D.G., Bush, A.I., Masters, C.L., and Barnham, K.J. 2003. Metal ions, pH, and cholesterol regulate the interactions of Alzheimer's disease amyloid-beta peptide with membrane lipid. J Biol Chem 278:2977-2982.
29.Zheng, L., Roberg, K., Jerhammar, F., Marcusson, J., and Terman, A. 2006. Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett 394:184-189.
30.Adamec, E., Mohan, P.S., Cataldo, A.M., Vonsattel, J.P., and Nixon, R.A. 2000. Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer's disease. Neuroscience 100:663-675.
31.Schwagerl, A.L., Mohan, P.S., Cataldo, A.M., Vonsattel, J.P., Kowall, N.W., and Nixon, R.A. 1995. Elevated levels of the endosomal-lysosomal proteinase cathepsin D in cerebrospinal fluid in Alzheimer disease. J Neurochem 64:443-446.
32.Cataldo, A.M., Paskevich, P.A., Kominami, E., and Nixon, R.A. 1991. Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci U S A 88:10998-11002.
33.Ditaranto, K., Tekirian, T.L., and Yang, A.J. 2001. Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer's disease. Neurobiol Dis 8:19-31.
34.Bagshaw, R.D., Pasternak, S.H., Mahuran, D.J., and Callahan, J.W. 2003. Nicastrin is a resident lysosomal membrane protein. Biochem Biophys Res Commun 300:615-618.
35.Pasternak, S.H., Bagshaw, R.D., Guiral, M., Zhang, S., Ackerley, C.A., Pak, B.J., Callahan, J.W., and Mahuran, D.J. 2003. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 278:26687-26694.
36.Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. 2003. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113-123.
37.Ohshita, T., and Kido, H. 1995. Simple preparation of rat brain lysosomes and their proteolytic properties. Anal Biochem 230:41-47.
38.Paigen, K., and Peterson, J. 1978. Coordinacy of lysosomal enzyme excretion in human urine. J Clin Invest 61:751-762.
39.Hatefi, Y., and Stiggall, D.L. 1978. Preparation and properties of succinate: Ubiquinone oxidoreductase (complex II) Methods in Enzymology 53:21-27.
40.Lai, C.-C., Huang, W.-H., Askari, A., Klevay, L.M., and Chiu, T.H. 1995. Expression of glutathion peroxidase and catalase in copper-deficient rat liver and heart. Nutritional Biochemistry 6:252-262.
41.Bergmeyer, H.U. 1955. [Measurement of catalase activity.]. Biochem Z 327:255-258.
42.Chan, W.C., and White, P.D. 2000. Fmoc Solid phase peptide synthesis: a practical approach. 222: 41-74, Oxford University Press, New York.
43.Sambrook, J., and Russell, D.W. 2001. Molecular Cloning 3 rd ed. 3: A8.40-A8.51, Gold Spring Harbor Laboratory Press, New York.
44.Myhre, O., Andersen, J.M., Aarnes, H., and Fonnum, F. 2003. Evaluation of the probes 2',7'-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575-1582.
45.Iqbal, M., Okazaki, Y., and Okada, S. 2003. In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage. Teratog Carcinog Mutagen Suppl 1:151-160.
46.Yoshiike, Y., Tanemura, K., Murayama, O., Akagi, T., Murayama, M., Sato, S., Sun, X., Tanaka, N., and Takashima, A. 2001. New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J Biol Chem 276:32293-32299.
47.Matsuzaki, S., Yasuda, Y., Kobayashi, S., Koyama, Y., Kawamoto, K., Katayama, T., and Tohyama, M. 2007. Monomeric Abeta and metals reduce their cytotoxicities to each other. Biochem Biophys Res Commun 358:540-544.
48.Bondy, S.C., Guo-Ross, S.X., and Truong, A.T. 1998. Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res 799:91-96.
49.Zou, K., Gong, J.S., Yanagisawa, K., and Michikawa, M. 2002. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22:4833-4841.
50.Plant, L.D., Boyle, J.P., Smith, I.F., Peers, C., and Pearson, H.A. 2003. The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci 23:5531-5535.
51.Hirakura, Y., Lin, M.C., and Kagan, B.L. 1999. Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo Red. J Neurosci Res 57:458-466.
52.Lau, T.L., Ambroggio, E.E., Tew, D.J., Cappai, R., Masters, C.L., Fidelio, G.D., Barnham, K.J., and Separovic, F. 2006. Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 356:759-770.
53.Kowalik-Jankowska, T., Ruta, M., Wisniewska, K., Lankiewicz, L., and Dyba, M. 2004. Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1-10, 1-16 fragments of human and mouse beta-amyloid peptide. J Inorg Biochem 98:940-950.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文