|
[1] A. Aazami and M.D. Stilp. Approximation algorithms and hardness for domination with propagation. In Proceedings of the 10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX’07, (2007) pp. 1–15. [2] R. Anderson, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In Proceedings of the 47th IEEE Symposium on Foundations of Computer Science, FOCS’06, (2006) pp. 475–486. [3] M. Ashburner et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nature Genetics, 25, (2000) pp. 25–29. [4] T.L. Baldwin, L. Mili, M.B. Boisen, Jr., and R. Adapa. Power system observability with minimal phasor measurement placewement. IEEE Trans. Power System, 8(2) (1993) pp. 707–715. [5] B.S. Baker. Approximation Algorithms for NP-complete problems on planar graphs. Journal of the ACM, 41(1) (1994) pp. 153–180. [6] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of 15th Annual Symposium on theory of Computing, (1983) pp. 80–86. [7] J. Berg and M. L‥assig. Cross-species analysis of biological networks by Bayesian alignment. Proc. Natl. Acad. Sci. USA, 103, (2006) pp. 10967–10972. [8] V. Berry, S. Guillemot, F. Nicolas, and C. Paul. On the approximation of computing evolutionary trees. In Proceedings of the 11th Annual International Computing and Combinatorics Conference, COCOON’05, (2005) pp. 115–125. [9] F. Bock. An algorithm to construct a minimum directed spanning tree in a directed network. Developments in Operations Research, Gordon and Breach, New York, (1971) pp. 29–44. [10] E. Boyle et al. GO:TermFinderXopen source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics, 20, (2004) pp. 3710–3715. [11] D.J. Brueni and L.S. Heath. The PMU placement problem. SIAM J. Discrete Math., 19(3) (2005) pp. 744–761. [12] P.M. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum branchings. Networks, 9 (1979) pp. 309–312. [13] G.J. Chang. Algorithmic aspects of domination in graphs. In: Handbook of Combinatorial Optimization (D.-Z. Du and P. M. Pardalos eds.), 3 (1998) pp. 339–405. [14] G.J. Chang. Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Appl. Math., 22 (1988/89) pp. 21–34. [15] D. Chakrabarty and G. Goel. On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP. In Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, FOCS’08, (2008) pp. 687–696. [16] N. Chen, R. Engelberg, C.T. Nguyen, P. Raghavendra, A. Rudra, and G. Singh. Improved approximation algorithms for the spanning star forest problem. In Proceedings of the 10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX’07, (2007) pp. 44–58. [17] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z.Du. A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks, 42(4) (2003) pp. 202–208. [18] Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph. Science Sinica, 14 (1965) pp. 1396–1400. [19] E.J. Cockayne, S.E. Goodman, and S.T. Hedetniemi. A linear algorithm for the domination number of a tree. Inform. Process. Lett., 4 (1975) pp. 41–44. [20] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms, 2nd Edition, The MIT Press, (2001). [21] P. Dorbec, M. Mollard, S. Klavˇzar, and S. ˇSpacapan. Power domination in product graphs. SIAM J. Discrete Math., 22(2) (2008) pp. 554–567. [22] M. Dorfling and M.A. Henning. A note on power domination in grid graphs, Discrete Applied Math., 154(6) (2006) pp. 1023–1027. [23] J. Dutkowski and J. Tiuryn. Identification of functional modules from conserved ancestral protein-protein interactions. Bioinformatics, 23, (2007) pp. 149–158. [24] J. Edmonds. Optimum branchings. J. Research of the National Bureau of Standards, 71B (1967) pp. 233–240. [25] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4) (1998) pp. 634–652. [26] J.A. Flannick, A.F. Novak, C.B. Do, B.S. Srinivasan, and S. Batzoglou. Automatic parameter learning for multiple network alignment. In Proceedings of the 12th International Conference on Research in Computational Molecular Biology, RECOMB’08, LNBI, 4955, (2008) pp. 214–231. [27] H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30(2) (1985) pp. 209–221. [28] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, (1979). [29] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc. (1980). [30] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and complexity results for power domination in graphs, Algorithmica, 52(2) (2008) pp. 177–202. [31] J.-D. Han, D. Dupuy, N. Bertin, M.E. Cusick, and M. Vidal. Effect of sampling on topology predictions of protein-protein interaction networks. Nature Biotech., 23, (2005) pp. 839–844. [32] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, and M.A. Henning. Domination in graphs applied to electric power networks. SIAM J. Discrete Math., 15(4) (2002) pp. 519–529. [33] T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Domination in Graphs: The Theory, Marcel Dekker, Inc. New York (1998). [34] T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York (1998). [35] J. H˚astad. Some optimal inapproximability results. J. ACM, 48 (2001) pp. 798–859. [36] M.A. Henning, O.R. Oellermann, and H.C. Swart. Bounds on distance domination parameters. J. Combin. Inform. System. Sci., 16 (1991) pp. 11–18. [37] M.A. Henning, O.R. Oellermann, and H.C. Swart. The diversity of domination. Discrete Math., 161 (1996) pp. 161–173. [38] D.S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on Computing, 11(3) (1982) pp. 555-556. [39] D.S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM, 32 (1985) pp. 130–136. [40] W.-L. Hsu, and K.-H. Tsai. Linear time algorithms on circular-arc graphs. Inform. Process. Letters, 40(3) (1991) pp. 123–129. [41] H. Huang, B.M. Jedynak, and J.S. Bader. Where have all the ineractions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput. Bio., 3, (2007) pp. 2155–2174. [42] T.J. Hubbard et al. Ensembl 2007. Nucleoc Acids Res., 35, (2007) pp. 610–617. [43] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 98, (2001) pp. 4569–4574. [44] H. Jeong, S.P. Mason, A.-L. Barab′asi, and Z.N. Oltvai. Lethality and centrality in protein networks. Nature, 411 (2001) pp. 41–42. [45] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9(3) (1974), pp. 256–278. [46] M. Kalaev, V. Bafna, and R. Sharan. Fast and accurate alignment of multiple protein networks. In Proceedings of the 12th International Conference on Research in Computational Molecular Biology, RECOMB’08, LNBI, 4955, (2008) pp. 246–256. [47] M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and genomes. Nucleoc Acids Res., 28, (2000) pp. 27–30. [48] M.-J. Kao and C.-S. Liao. Capacitated domination problem. In Proceedings of 18th International Symposium on Algorithms and Computation, ISAAC’07, (2007) pp. 256– 267. Also accepted by Algorithmica, 2009. [49] R.M. Karp. A simple derivation of edmonds’ algorithm for optimum branchings. Networks, 1 (1971) pp. 265–272. [50] B.P. Kelley, R. Sharan, R.M. Karp, T. Sittler, D.E. Root, B.R. Stockwell, and T. Ideker. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA, 100, (2003) pp. 11394–11399. [51] B.P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B.R. Stockwell, T. Ideker. Pathblast: a tool for alignment of protein interaction networks. Nucleoc Acids Res., 32, (2004) pp. 83–88. [52] W.J. Kent, C. Riemer, L. Elnitski, A.F. Smit, K.M. Roskin, R. Baertsch, K. Rosenbloom, H. Clawson, E.D. Green, D. Haussler, and W. Miller. Aligning multiple genomic sequences with the threaded blockset aligner, Genome Research, 14 (2004), pp. 708–715. [53] M. Koyuturk, A. Grama, and W. Szpankowski. Pairwise local alignment of protein interaction networks guided by models of evolution. In Proceedings of the 9th International Conference on Research in Computational Molecular Biology, RECOMB’05, LNBI, 3500, (2005) pp. 48–65. [54] J. Kneis, D. M‥olle, S. Richter, and P. Rossmanith. Parameterized power domination complexity. Inform. Process. Letters, 98(4) (2006) pp. 145–149. [55] N.J. Krogan et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, (2006) pp. 4412–4415. [56] D.T. Lee, M. Sarrafzadeh, and Y.F. Wu. Minimum cuts for circular-arc graphs. SIAM J. Computing, 19(6) (1990) pp. 1041–1050. [57] C.-S. Liao and G.J. Chang. Algorithmic aspect of k-tuple domination in graphs. Taiwanese J. Math., 6 (2002) pp. 415-420. [58] C.-S. Liao and G.J. Chang. k-tuple domination in graphs. Inform. Process. Letters, 87(1) (2003) pp. 45–50. [59] C.-S. Liao and D.T. Lee. Power domination problem in graphs. In Proceedings of 11th International Computing and Combinatorics Conference, COCOON’05, (2005) pp. 818– 828. [60] C.-S. Liao and L. Zhang. Approximating the spanning k-tree forest problem. In Proceedings of the third International Frontiers of Algorithmics Workshop, FAW’09, (2009). [61] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. IsoRankN: Spectral methods for global alignment of multiple protein networks. In Proceedings of the 17th International Conference on Intelligent Systems for Molecular Biology, ISMB’09, (2009). [62] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. USA, 86, (1989) pp. 4412–4415. [63] L. Lov′asz. On the ratio of optimal and fractional covers. Discrete Math., 13 (1975) pp. 383–390. [64] L.R. Matthews, P. Vaglio, J. Reboul, H. Ge, B.P. Davis, J. Garrels, S. Vincent, and M. Vidal. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or interologs. Genome Res., 11, (2001) pp. 2120– 2126. [65] G.R. Mishra et al. Human protein reference database - 2006 update. Nucleoc Acids Res., 34, (2006) pp. 411–414. [66] C.T. Nguyen, J. Shen, M. Hou, L. Sheng, W. Miller, and L. Zhang. Approximating the spanning star forest problem and its applications to genomic sequence alignment. SIAM J. Comput., 38 (2008) pp. 946–962. Also appeared in Proceedings of SODA’2007, pp. 645–654. [67] G. Ramalingam and C. Pandu Rangan. A unified approach to domination problems in interval graphs. Inform. Process. Letters, 27(5) (1988) pp. 271–274. [68] A. Schlicker, F.S. Domingues, J. Rahnenf‥uhrer, and T. Lengauer. A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics, 7, (2006) pp. 1–16. [69] E. Segal, R. Yelensky, A. Kaushal, T. Pham, A, Regev, D. Koller, and N. Friedman. GeneXPress: A Visualization and Statistical Analysis Tool for Gene Expression and Sequence Data. In Proceedings of the 12th International Conference on Intelligent Systems for Molecular Biology, ISMB’04, (2004) pp. 1–3. [70] R. Sharan, S. Suthram, R.M. Kelly, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R.M. Karp, and T. Ideker. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA, 102, (2005) pp. 1974–1979. [71] R. Singh, J. Xu, and B. Berger. Pairwise global alignment of protein interaction networks by matching neighborhood topology. In Proceedings of the 11th International Conference on Research in Computational Molecular Biology, RECOMB’07 LNBI, 4453, (2007) pp. 16–31. [72] R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. USA, 105, (2008) pp. 12763–12768. [73] P.J. Slater. R-Domination in Graphs. J. ACM, 23 (1976) pp. 446–450. [74] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. BioGRID: a general repository for interaction datasets. Nucleoc Acids Res., 34, (2006) pp. 535–539. [75] R.E. Tarjan. Efficiency of a good but not linear set union algorithm, Journal of the ACM, 22(2) (1975) pp. 215–225. [76] R.E. Tarjan. Finding optimum branchings. Networks, 7 (1977) pp. 25–35. [77] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleoc Acids Res., 22, (1994) pp. 4673–4680. [78] K.-H. Tsai and D.T. Lee. k-Best Cuts for Circular-Arc Graphs. Algorithmica, 18(2) (1997) pp. 198–216. [79] P. Uetz et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403, (2000) pp. 623–627. [80] I. Xenarious, L. Salw′ınski, X.J. Duan, P. Higney, S.M. Kim, and D. Eisenberg. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleoc Acids Res., 30, (2002) pp. 303–305. [81] G. Xu, L. Kang, E. Shan, and M. Zhao. Power domination in block graphs. Theoret. Comput. Science, 359 (2006) pp. 299–305. [82] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM J. Appl. Math., 38 (1980) pp. 364–372. [83] H. Yu, N.M. Luscombe, H.X. Lu, X. Zhu, Y. Xia, J.D. Han, N. Bertin, S. Chung, M. Vidal, and M. Gerstein. Annotation transfer between genomes: protein protein interologs and protein DNA regulogs. Genome Res., 14, (2004) pp. 1107–1118. [84] M. Zhao, L. Kang, and G.J. Chang. Power domination in graphs. Discrete Math., 306(15) (2006) pp. 1812–1816.
|