跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃上瑜
研究生(外文):Huang, Shang-Yu
論文名稱:利用k.p法計算垂直耦合雙量子點的電子結構
論文名稱(外文):Multi-band k.p theory for the electronic structure of vertically coupled double quantum dots
指導教授:鄭舜仁鄭舜仁引用關係
指導教授(外文):Cheng, Shun-Jen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:多能帶k∙p法波包近似法垂直耦合自組式量子點雙量子點平面波展開法有限差分法電子結構電洞反對稱態對稱態應變人造原子人造分子
外文關鍵詞:k∙p modelenvelope function approximationvertical couplingself-assembled quantum dotdouble quantum dotplane wave expansionfinite difference methodelectronic structureholeanti-bounding statebounding statestrainartificial atomartificial molecule
相關次數:
  • 被引用被引用:4
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是利用多能帶k∙p法配合波包近似法來討論垂直耦合自組式雙量子點系統的電子結構。對於電子的電子結構部份我們主要是用單能帶模型;而對於電洞的電子結構我們則是採用四能帶模型,在本論文中所用到的數值方法有平面波展開法和有限差分法。
垂直偶合雙量子點系統和單量子點系統來比較,前者提供了額外可調變的參數,例如,利用改變雙量子點系統間的距離、偏壓等,可以大幅改變系統的電子結構。而且在基礎研究方面,雙量子點系統可以類比於人造分子,電子的行為會和分子類似基態通常都是對稱的bonding states ,而第一激發態為反對稱的anti-bonding states。然而,最新的研究卻發現因為重電洞態和輕電洞態的混成大部分的情況下雙量子點中電洞的基態竟是反對稱的anti-bonding states [7]。
這篇論文中,我們利用自行發展的數值程式先驗證了文獻[7]的理論與分析,然後進一步考慮實際量子點的形狀、應變和擴散的效應。我們確認對截角金字塔的雙量子點而言,隨著量子點間距離增加電洞基態轉變為anti-bonding states的臨界距離僅約1 (nm),而且應變效應有助於anti-bonding states電洞基態的形成。
In this thesis, a theoretical study of the electronic structure of vertically coupled InAs/GsAs self-assembled double quantum dots is presented. The single-band (four-band) k∙p model was used to calculate the electron structure of a single electron (a valence hole) confined in the double dot system. The numerical calculations were implemented using both of the plane wave expansion and finite difference methods.
As compared with single dot systems, coupled double quantum dots with extra tuning parameters for the inter-dot coupling, such as inter-dot distance or applied bias field, allow for more controllability of the electronic structure. With the engineered atomic-like electronic structure, a coupled double dot is often referred to as an artificial molecule and provides an interesting playground for fundamental research. In atomic physics, the ground states of a real molecule are known to be the bounding states and the first excited states to be anti-bounding states. In solid-state artificial molecules, an electron does have bounding-like ground states but a valence hole shows more complex features. Remarkably, recent studies showed that the ground states of a valence hole in a coupled quantum dot show an anti-bounding-like character.[7] The reversal of the type of the hole ground states was attributed to the significant heavy-hole-light-hole intermixing in the spatial region between dots.
In this work, I carried out the numerical k∙p calculations for vertically coupled InAs/InGsAs self-assembled double quantum dots and confirmed the reversal of the type of the valence hole ground states, as previously revealed in literature.[7] Furthermore, I studied the effect of strain on the electronic structure of the double quantum dots. The calculation shows that the critical inter-dot distance is about 1nm, above which the hole ground states of double are anti-bounding-like. The strain in a dot molecule makes the anti-bonding-like ground states even more stable and decreases the critical inter-dot distance.
中文摘要………………………………………………………… i

英文摘要………………………………………………………… ii

致謝……………………………………………………………… iii

目錄……………………………………………………………… iv

表目錄…………………………………………………………… v

圖目錄…………………………………………………………… vi

第一章、導論…………………………………………………… 1
1.1量子點簡介 ……………………………………………… 1
1.2理論文獻 ………………………………………………… 3
1.3研究動機 ………………………………………………… 3
1.4章節概要 ………………………………………………… 4
第二章、K.P法和應變………………………………………… 5
2.1 K•P法……………………………………………………… 6
2.2 Multi-band method………………………………………… 8
2.3 Envelope Function Approximation(EFA) ………………… 10
2.4特徵函數 ………………………………………………… 12
2.5應變的模擬並且文獻的比較……………………………… 14
第三章、數值方法 ……………………………………………… 31
3.1平面波展開法 …………………………………………… 32
3.2有限差分法………………………………………………… 36
3.3四能帶模型收斂性與驗證討論…………………………… 37
第四章、單量子點系統和雙量子點系統 ……………………… 43
4.1單量子點 ………………………………………………… 43
4.2雙量子點 ………………………………………………… 48
第五章、結論 …………………………………………………… 59
參考文獻 ………………………………………………………… 61
附錄A、材料參數 ……………………………………………… 62
附錄B、擴散現象 ……………………………………………… 64
[1]M. A. Kastner, Phys. Today 46, 24 (1993)
[2]S. Tarucha, D. G. Austing, and T. Honda, Phys. Rev. Lett. 77, 3613 (1996)
[3]Stanko Tomi, Phys. Rev. B 73, 125348 (2006)
[4]A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, Appl.Phys. Lett. 84, 1058 (2004)
[5]Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J.Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper,Science 295, 102 (2002)
[6]Gabriel Bester, Alex Zunger, J. Shumway, Phys. Rev. B 71, 075325 (2005)
[7] J. I. Climente, M. Korkusinski, G. Goldoni, and P. Hawrylak , “Theory of valence band holes as Luttinger spinors in vertically coupled quantum dots”(2008)
[8]J. M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955)
[9]S. L. Chuang “Physics of Optoelectronic Devices”, Wiley (1995)
[10] Craig Pryor, Phys. Rev. B 57, 7190 (1998)
[11]L. V. Fausett, “Applied Numerical Analysis Using Matlab”, Prentice-Hall(1999)
[12]A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O'Reilly, J. Appl. Phys. 86, 297 (1999)
[13] Michael C. Y. Chan, Charles Surya, and P. K. A. Wai, J. Appl. Phys. 90, 197 (2001)
[14] Löwdin P. O., J. Chem. Phys. 19, 1396(1951)
[15]吳建民,利用k.p法研究砷化銦/砷化鎵之奈米結構,台灣大學,碩士論文,民國九十五年七月
[16] M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, R2300 (1996)
[17] Chris G., Van de Walle, Phys. Rev. B 39, 1871 (1989)
[18] O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊