跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐柏皓
研究生(外文):HSU, PO-HAO
論文名稱:永續性供應商評選與訂單分配模型
論文名稱(外文):A model for sustainable supplier selection and order allocation
指導教授:劉建浩劉建浩引用關係
指導教授(外文):LIOU, JIANN-HAW
口試委員:車振華劉建浩沈高毅
口試委員(外文):CHE, ZHEN-HUALIOU, JIANN-HAWSHEN, KAO-YI
口試日期:2019-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:供應商選擇訂單分配模糊決策實驗室分析法改良後理想解類似度順序偏好法多目標決策方法非支配解排列遺傳演算法
外文關鍵詞:Supplier selectionOrder allocationFuzzy DEMATELModified TOPSISMulti-Objective ProblemNSGA-II
相關次數:
  • 被引用被引用:5
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:154
  • 收藏至我的研究室書目清單書目收藏:0
近年來企業在供應鏈管理中,開始專注在永續性發展績效,並在遵守環境法規的情況下滿足顧客需求。因此,永續性發展已經成為供應鏈管理中的一個重要問題,各企業更願意與有相同意識的公司合作。本研究提出了永續性供應商選擇和訂單分配問題的決策模型。該模型分為三個階段。首先,模糊決策實驗室分析法 (Fuzzy Decision Making Trial and Evaluation Laboratory, Fuzzy DEMATEL)用於計算決策過程中永續性準則的權重,並找出準則間的相互影響關係。第二,由Fuzzy DEMATEL得到的權重,用來作為修正後理想解類似度順序偏好法 (Modified Technique for Order Preference by Similarity to an Ideal Solution, Modified TOPSIS)計算各供應商永續性發展績效的排名依據。最後,本文將各供應商的績效值作為其中一個目標,並與總成本一同使用多目標規劃 (Multi-Objective Programming, MOP)建立訂單分配模型,最後在使用非支配解排列遺傳演算法 (NSGA-II)得到多組訂單分配結果,這些結果可給予決策者做為訂單分配的參考依據。
In recent years, enterprises have focused on improving the performance of sustainable development and satisfy customer needs while complying with environmental regulations in the supply chain management. Therefore, sustainable development has become an important issue in supply chain management. Enterprises are willing to cooperate with the company that has the same consciousness. This study proposes a decision model for sustainability supplier selection and order allocation problem. The model is divided into three phases. First, the Fuzzy Decision Making Trial and Evaluation Laboratory (Fuzzy DEMATEL) is used to calculate weights of the sustainability criteria in decision process, and find the relationship between the criteria. Second, this study ranks the sustainability performance of each supplier after wights obtained by Fuzzy DEMATEL. Finally, the performance value of each suppliers is considered as one of the objective function. Then, this study uses the multi-objective programming (MOP) to establish an order allocation model. The non-dominated de-sequence genetic algorithm (NSGA- II) is applied to obtain a set of Pareto solutions for order allocation, which can provide decision makers as a reference for supplier selection and order allocation problems.
目 錄

摘 要 i
表目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究方法 4
1.4 研究架構 5
第二章 文獻探討 6
2.1 永續發展 6
2.1.1 永續發展的起源與定義 6
2.1.2 永續性的供應鏈管理相關研究 7
2.1.3 永續性發展的三個面向 9
2.2 供應商評選方法 11
2.2.1 決策實驗室分析法 11
2.2.2理想解類似度順序偏好法 13
2.3 供應商訂單分配的方法及應用 15
2.4 基因演算法的演進與NSGA-II 16
第三章 研究方法 20
3.1 模糊決策實驗室分析法 20
3.2 修正後理想解類似度順序偏好法 25
3.3 多目標規劃 28
3.4 非支配解排列遺傳演算法 29
3.4.1 編碼/解碼 29
3.4.2 初始群集 31
3.4.3 適合度函數 31
3.4.4 NSGA-II創新之三步驟 32
3.4.5 基因演算因子 34
第四章 實證分析 38
4.1資料來源與輸入 38
4.2 Fuzzy DEMATEL 38
4.3 修正TOPSIS法 43
4.3 供應商訂單分配模型 46
4.3.1 參數符號說明 46
4.3.2 數學模型 47
4.3.3 NSGA-II求解模型 51
第五章 結果與討論 59
5.1 針對永續性準則之討論 59
5.2 多目標訂單分配模型之比較 60
第六章 結論與未來建議 63
6.1 結論 63
6.2 未來研究建議 64
參考文獻 66
附錄 72
附錄A DEMATEL專家問卷 72
附錄B 各準則之影響關係圖 77
附錄C 修正TOPSIS法專家問卷 78
附錄D 最小值最大法 80


表目錄

表2.1 永續發展的三個基本原則 7
表2.2 永續性發展的三面向與其準則 10
表2.2 永續性發展的三面向與其準則 (續) 11
表2.3 供應鏈目標規劃與分析 17
表3.1 DEMATEL模糊語意尺度表 (Gören, 2018) 22
表3.2永續性面向的準則 24
表3.3 TOPSIS三角模糊語意尺度表 25
表4.1 初始模糊直接影響關係矩陣 (X1) 39
表4.2 模糊直接影響關係矩陣 (X) 40
表4.3 正規化模糊直接影響關係矩陣 ( ) 41
表4.4 模糊總影響關係矩陣 (T) 41
表4.5 關聯度、影響度與權重之計算結果 42
表4.6 初始化模糊決策矩陣 (D) 43
表4.7 正規化模糊決策矩陣 (V) 44
表4.8 加權正規化模糊決策矩陣 (E) 45
表4.9 各供應商與正負理想解之距離與排名 45
表4.10 模型之參數名稱與說明 46
表4.11 參數之實際數值 47
表4.12 NSGA-II參數設定 51
表5.1 各目標之最佳與最差解 61
表5.2 單目標模型之計算結果 61
表5.3 單目標與多目標模型之結果比較 62


圖目錄

圖2.1 永續性發展在2014至2018應用在各領域的文章數量 8
圖2.2 永續性發展與供應鏈在2014至2018結合應用的文章數量 8
圖2.3 供應鏈永續性三元素 9
圖2.4 TOPSIS正負理想解相對位置 14
圖2.5 柏拉圖解概念 18
圖3.1 研究方法架構圖 21
圖3.3 柏拉圖前緣線 32
圖3.4 排擠距離計算示意圖 33
圖3.5 單點交配法 35
圖3.6 兩點交配法 35
圖3.7 基因突變示意圖 36
圖3.8 菁英保留策略示意圖 37
圖4.1 NSGA-II之柏拉圖解 (點分布圖) 51


參考文獻

Aktin, T. & Gergin, Z. (2016). “Mathematical modelling of sustainable procurement strategies: three case studies”. Journal of Cleaner Production, 113, pp.767-780.
Amindoust, A., Ahmed, S., Saghafinia, A., & Bahreininejad, A. (2012). “Sustainable supplier selection: A ranking model based on fuzzy inference system”. Applied Soft Computing, 12(6), pp.1668-1677.
Azadnia, A. H., Saman, M. Z. M., & Wong, K. Y. (2015). “Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process”. International Journal of Production Research, 53(2), pp.383-408.
Azadnia, A. H., Saman, M. Z. M., Wong, K. Y., Ghadimi, P., & Zakuan, N. (2012). “Sustainable Supplier Selection based on Self-organizing Map Neural Network and Multi Criteria Decision Making Approaches”. Procedia - Social and Behavioral Sciences, 65, pp.879-884.
Büyüközkan, G., & Çifçi, G. (2012). “A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers”. Expert Systems with Applications, 39(3), pp.3000-3011.
Bai, C. & Sarkis, J. (2010). “Integrating sustainability into supplier selection with grey system and rough set methodologies”. International Journal of Production Economics, 124(1), pp.252-264.
Bakeshlou, E. A., Khamseh, A. A., Asl, M. A. G., Sadeghi, J., & Abbaszadeh, M. (2017). “Evaluating a green supplier selection problem using a hybrid MODM algorithm”. Journal of Intelligent Manufacturing, 28(4), pp.913-927.
Baykasoğlu, A., Kaplanoğlu, V., Durmuşoğlu, Z. D. U., & Şahin, C. (2013). “Integrating fuzzy DEMATEL and fuzzy hierarchical TOPSIS methods for truck selection”. Expert Systems with Applications, 40(3), pp.899-907.
Current, J., Desai, A., & Weber, C. A. (2000). “An optimization approach to determining the number of vendors to employ”. Supply Chain Management: An International Journal, 5(2), pp.90-98.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). “A fast and elitist multiobjective genetic algorithm: NSGA-II”. IEEE Transactions on Evolutionary Computation, 6(2), pp.182-197.
Erdem, A. S. & Göçen, E. (2012). “Development of a decision support system for supplier evaluation and order allocation”. Expert Systems with Applications, 39(5), pp.4927-4937.
Frostenson, M. & Prenkert, F. (2015). “Sustainable supply chain management when focal firms are complex: a network perspective”. Journal of Cleaner Production, 107, pp.85-94.
Gören, H. G. (2018). “A decision framework for sustainable supplier selection and order allocation with lost sales”. Journal of Cleaner Production, 183, pp.1156-1169.
Ghaniabadi, M. & Mazinani, A. (2017). “Dynamic lot sizing with multiple suppliers, backlogging and quantity discounts”. Computers & Industrial Engineering, 110, pp.67-74.
Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015a). “Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic”. Computers & Operations Research, 62, pp.112-130.
Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015b). “Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic”. Comput. Oper. Res., 62(C), pp.112-130.
Govindan, K., Khodaverdi, R., & Jafarian, A. (2013). “A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach”. Journal of Cleaner Production, 47, pp.345-354.
Govindan, K., Pokharel, S., & Sasi Kumar, P. (2009). “A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider”. 54, pp.28-36.
Guo, W., Deng, Q., & Pan, X. D. (2013). “Risk Evaluation of Highway Tunnel Construction Based on DEMATEL Method”. Applied Mechanics and Materials, 368-370, pp.1472-1476.
Gupta, H., & Barua, M. K. (2017). “Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS”. Journal of Cleaner Production, 152, pp.242-258.
Handfield, R., Walton, S. V., Sroufe, R., & Melnyk, S. A. (2002). “Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process”. European Journal of Operational Research, 141(1), pp.70-87.
Hori, S., & Shimizu, Y. (1999). “Designing methods of human interface for supervisory control systems”. Control Engineering Practice, 7(11), pp.1413-1419.
Hsu, C.-W. & Hu, A. H. (2009). “Applying hazardous substance management to supplier selection using analytic network process”. Journal of Cleaner Production, 17(2), pp.255-264.
Hsu, C.-W., Kuo, T.-C., Chen, S.-H., & Hu, A. H. (2013). “Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management”. Journal of Cleaner Production, 56, pp.164-172.
Hwang, C. L., & Yoon, K.. (1981). Multiple Attributes Decision Making: Methods and Applications, Springer.
Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. Chapman and Hall/CRC.
Jayaraman, V. (1999). “A multi‐objective logistics model for a capacitated service facility problem”. International Journal of Physical Distribution & Logistics Management, 29(1), pp.65-81.
Ji, X., Wu, J., & Zhu, Q. (2016). “Eco-design of transportation in sustainable supply chain management: A DEA-like method”. Transportation Research Part D: Transport and Environment, 48, pp.451-459.
Kamjoo, A., Maheri, A., Dizqah, A. M., & Putrus, G. A. (2016). “Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming”. International Journal of Electrical Power & Energy Systems, 74, pp.187-194.
Kaur, H., Singh, S. P., & Glardon, R. (2016). “An Integer Linear Program for Integrated Supplier Selection: A Sustainable Flexible Framework”. Global Journal of Flexible Systems Management, 17(2), pp.113-134.
Kuo, R. J., Wang, Y. C., & Tien, F. C. (2010). “Integration of artificial neural network and MADA methods for green supplier selection”. Journal of Cleaner Production, 18(12), pp.1161-1170.
Kuo, T. (2017). “A modified TOPSIS with a different ranking index”. European Journal of Operational Research, 260(1), pp.152-160.
Lee, A. H. I., Kang, H.-Y., Hsu, C.-F., & Hung, H.-C. (2009). “A green supplier selection model for high-tech industry”. Expert Systems with Applications, 36(4), pp.7917-7927.
Lee, E. S., & Li, R. J. (1993). “Fuzzy multiple objective programming and compromise programming with Pareto optimum”. Fuzzy Sets and Systems, 53(3), pp.275-288.
Liou, J. J. H., & Tzeng, G.-H. (2012). “Comments on “Multiple criteria decision making (MCDM) methods in economics: an overview””. Technological and Economic Development of Economy, 18(4), pp.672-695.
Liu, T., Gao, X., & Wang, L. (2015). “Multi-objective optimization method using an improved NSGA-II algorithm for oil–gas production process”. Journal of the Taiwan Institute of Chemical Engineers, 57, pp.42-53.
Lo, H.-W., Liou, J. J. H., Wang, H.-S., & Tsai, Y.-S. (2018). “An integrated model for solving problems in green supplier selection and order allocation”. Journal of Cleaner Production, 190, pp.339-352.
Lu, L., Wu, C., & Kuo, T. (2007). “Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis”. 45, pp.5451-5451.
Luthra, S., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). “An integrated framework for sustainable supplier selection and evaluation in supply chains”. Journal of Cleaner Production, 140, pp.1686-1698.
Maleki, L., Pasandideh, S. H. R., Niaki, S. T. A., & Cárdenas-Barrón, L. E. (2017). “Determining the prices of remanufactured products, capacity of internal workstations and the contracting strategy within queuing framework”. Applied Soft Computing, 54, pp.313-321.
Moghaddam, K. S. (2015). “Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty”. Expert Systems with Applications, 42(15), pp.6237-6254.
Osiro, L., Lima-Junior, F. R., & Carpinetti, L. C. R. (2014). “A fuzzy logic approach to supplier evaluation for development”. International Journal of Production Economics, 153, pp.95-112.
Özkan, G., & İnal, M. (2014). “Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems”. Applied Soft Computing, 24, pp.232-238.
Psychas, I. D., Marinaki, M., Marinakis, Y., & Migdalas, A. (2014, May). “Minimizing the fuel consumption of a multiobjective vehicle routing problem using the parallel multi-start NSGA II algorithm.” In International Conference on Network Analysis, Springer, Cham, pp. 69-88..
Rajesh, R., & Ravi, V. (2015). “Supplier selection in resilient supply chains: a grey relational analysis approach”. Journal of Cleaner Production, 86, pp.343-359.
Ramezankhani, M. J., Torabi, S. A., & Vahidi, F. (2018). “Supply chain performance measurement and evaluation: A mixed sustainability and resilience approach”. Computers & Industrial Engineering, 126, pp.531-548.
Rezaei, J. (2015). “Best-worst multi-criteria decision-making method”. Omega, 53, pp.49-57.
Rogers, D. S., & Carter, C. R. (2008). “A framework of sustainable supply chain management: moving toward new theory”. International Journal of Physical Distribution & Logistics Management, 38(5), pp.360-387.
Saaty, T. L. (1979). “Applications of analytical hierarchies”. Mathematics and Computers in Simulation, 21(1), pp.1-20.
Shen, L., Olfat, L., Govindan, K., Khodaverdi, R., & Diabat, A. (2013). “A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences”. Resources, Conservation and Recycling, 74, pp.170-179.
Singh, A. (2014). “Supplier evaluation and demand allocation among suppliers in a supply chain”. Journal of Purchasing and Supply Management, 20(3), pp.167-176.
Su, T.-S., & Lin, Y.-F. (2015). “Fuzzy multi-objective procurement/production planning decision problems for recoverable manufacturing systems”. Journal of Manufacturing Systems, 37, pp.396-408.
Tamimi, A., Naidu, D. S., & Kavianpour, S. (2015, October). “An Intrusion Detection System Based on NSGA-II Algorithm. ” In 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic, IEEE., pp. 58-61.
Taylan, O., Bafail, A. O., Abdulaal, R. M. S., & Kabli, M. R. (2014). “Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies”. Applied Soft Computing, 17, pp.105-116.
Trapp, A. C. & Sarkis, J. (2016). “Identifying Robust portfolios of suppliers: a sustainability selection and development perspective”. Journal of Cleaner Production, 112, pp.2088-2100.
Tsai, S. B., Wei, Y. M., Chen, K. Y., Xu, L., Du, P., & Lee, H. C. (2015). “Evaluating green suppliers from a green environmental perspective”. Environment and Planning B: Planning and Design, 43(5), pp.941-959.
Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). “The evaluation of airline service quality by fuzzy MCDM”. Tourism Management, 23(2), pp.107-115.
Tseng, M. L., Wu, K. J., Hu, J., & Wang, C.-H. (2018). “Decision-making model for sustainable supply chain finance under uncertainties”. International Journal of Production Economics, 205, pp.30-36.
Tzeng, G. H., Chiang, C. H., & Li, C. W. (2007). “Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL”. Expert Systems with Applications, 32(4), pp.1028-1044.
Vital Soto, A., Chowdhury, N. T., Allahyari, M. Z., Azab, A., & Baki, M. F. (2017). “Mathematical modeling and hybridized evolutionary LP local search method for lot-sizing with supplier selection, inventory shortage, and quantity discounts”. Computers & Industrial Engineering, 109, pp.96-112.
Vural, C. A. (2015). “Sustainable Demand Chain Management: An Alternative Perspective for Sustainability in the Supply Chain”. Procedia - Social and Behavioral Sciences, 207, pp.262-273.
Wan, S. P., Xu, G. l., & Dong, J. Y. (2017). “Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment”. Information Sciences, 385-386, pp.19-38.
Wang, X. (2015). “A comprehensive decision making model for the evaluation of green operations initiatives”. Technological Forecasting and Social Change, 95, pp.191-207.
Wu, Z., Kwong, C. K., Aydin, R., & Tang, J. (2017). “A cooperative negotiation embedded NSGA-II for solving an integrated product family and supply chain design problem with remanufacturing consideration”. Applied Soft Computing, 57, pp.19-34.
Yang, J. L. & Tzeng, G. H. (2011). “An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method”. Expert Systems with Applications, 38(3), pp.1417-1424.
Yazdani, M., Chatterjee, P., Zavadskas, E. K., & Hashemkhani Zolfani, S. (2017). “Integrated QFD-MCDM framework for green supplier selection”. Journal of Cleaner Production, 142, pp.3728-3740.
Yeh, W. C. & Chuang, M.-C. (2011). “Using multi-objective genetic algorithm for partner selection in green supply chain problems”. Expert Systems with Applications, 38(4), pp.4244-4253.
Yu, F., Yang, Y., & Chang, D. (2018). “Carbon footprint based green supplier selection under dynamic environment”. Journal of Cleaner Production, 170, pp.880-889.
Zhou, G., Min, H., & Gen, M. (2003). “A genetic algorithm approach to the bi-criteria allocation of customers to warehouses”. International Journal of Production Economics, 86(1), pp.35-45.
Zitzler, E., Deb, K., & Thiele, L. (2000). “Comparison of Multiobjective Evolutionary Algorithms: Empirical Results”. Evol. Comput., 8(2), pp.173-195.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top