跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹勳賢
研究生(外文):Zhan, Xun Xain
論文名稱:粒子群演算法之最佳化比例積分控制器應用於低軌衛星追蹤系統
論文名稱(外文):A Hybrid Particle Swarm Optimization / Proportional Integral controller for the Low Earth Orbit Satellite Tracking System
指導教授:蘇德仁蘇德仁引用關係
指導教授(外文):Te-Jen Su
口試委員:蘇德仁吳賢財鐘國家施松村陳瓊興
口試委員(外文):Te-Jen SuHsien-Tsai WuGwo-Jia JongSung-Tsun ShihChiung-Hsing Chen
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:117
中文關鍵詞:低軌衛星追蹤比例積分控制器粒子群最佳化演算法天線控制器
外文關鍵詞:LEO satellite trackingPI controllerParticle swarm optimizationAntenna controller
相關次數:
  • 被引用被引用:1
  • 點閱點閱:990
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
本論文在於發展結合智慧型演算機制的控制系統應用於追蹤低軌道衛星。衛星追蹤主要仰賴SGP4軌道預測模型所產生的天線指向資料庫,依循指向座標來命令各軸的轉動,齒輪轉動時產生間隙影響到接收信號的強度,比例積分控制器可用來調整機構傳動軸所造成之誤差量。粒子群最佳化具有較少參數設定與快速收斂優點,用來進行參數最佳化與變數篩選,應用粒子群最佳化演算法來收尋PI控制器的kp與ki參數,而在搜尋的過程中使用解角器回授機構實際角度的指標去做為判斷性能優劣的依據。

最後,由實驗數據將可證明本文所製作之衛星天線控制器與機構可達到精確的追蹤與程式追蹤模式之功能。

The purpose of this thesis is to develop an intelligent algorithm of control system to track low-orbit satellites. Satellite tracking methods rely on SGP4 orbit forecasting model generated by the antenna pointing database and follow the point coordinates to command the rotation of the axes. Gears rotation gap will affect the strength of the received signal. The PI controller can adjust the error values caused by the drive shaft mechanism. Particle swarm optimization has fewer parameter settings and the advantages of fast convergence used for parameter optimization and variable selection. And particle swarm optimization algorithm can be used to search for the PI controller parameters, k_p and k_i. In the search process using resolver feedback mechanism of actual angle indicator as a basis to judge the fitness value of pros and cons.

The experimental results demonstrate the reliability of proposed system and the function of program track mode.

摘 要
Abstract
致 謝
目 錄
圖 目 錄
表 目 錄
一、緒論
1.1 前言
1.2 研究動機
1.3 文獻回顧
1.4 論文架構
二、低軌衛星追蹤系統架構
2.1 低軌衛星追蹤簡介
2.1.1 福衛二號
2.1.2 福衛二號衛星軌道
2.2 衛星軌道預測
2.2.1 衛星軌道座標
2.2.2 衛星軌道計算
2.2.3 天線指向座標預測模型
2.2.4 天線指向和三軸角度之轉換
2.3 追蹤系統架構
2.3.1 天線控制器
2.4 交流伺服馬達控制理論與原理
2.4.1 伺服馬達原理
2.4.2 伺服馬達控制方法
2.5 嵌入式系統
2.6 解角器控制理論與原理
三、粒子群最佳化演算法之比例積分控制器
3.1 粒子群最佳化演算法
3.1.1 粒子群最佳化演算法簡介
3.1.2 粒子群最佳化演算法的法則
3.1.3 粒子群最佳化的演化流程
3.2 比例積分控制器
3.2.1 比例積分控制器簡介
3.2.2 比例控制器
3.2.3 積分控制器
3.3 結合粒子群與比例積分控制器
四、實驗結果與分析
4.1 實驗設備介紹
4.1.1 機構設計
4.1.2 三軸天線伺服馬達驅動系統
4.1.3 三軸解角器訊號處理電路設計
4.1.4 GPS衛星定位器驅動
4.1.5 衛星天線控制器軟體設計
4.2 實驗結果
4.2.1 伺服馬達位置模式實驗
4.2.2 伺服馬達速度模式實驗
4.2.3 伺服馬達速度模式結合PSO-PI實驗
4.2.4 實驗分析
五、結論與未來展望
5.1 結論
5.2 後續建議與發展
六、參考文獻

發表論文
自述

[1]Osborne, J., Hicks, G., and Fuentes, R., “Global Analysis of the Double-Gimbal Mechanism”, IEEE Control Systems Magazine, pp. 44-64, 2008.

[2]Yoshida, T., Ohata, K., and Ueba, M., “Highly Accurate Inclinometer Robust to Ultralow-Frequency Acceleration Disturbances and Applications to Auto tracking Antenna Systems for Vessels”, IEEE Trans. Instrumentation and Measurement, Vol. 58, No. 8, pp. 2525-2534, 2009.

[3]Soltani, M. N., Zamanabadi, R. I., and Wisniewski, R., “Reliable Control of s hip-Mounted Satellite Tracking Antenna”, IEEE Trans. Control Systems Technology, Vol. 19, No. 1, pp. 221-228, 2011.

[4]Chaturvedi, N. A., Bernstein, D. S., Ahmed, J., Bacconi, F., and McClamroch, N. H., “Globally Convergent Adaptive Tracking of Angular Velocity and Inertia Identification for a 3-DOF Rigid Body”, IEEE Trans. Control Systems Technology, Vol. 14, No. 5, pp. 841-853, 2006.

[5]Lin, F.-J., Chou, P.-H., and Kung, Y.-S., “Robust Fuzzy Neural Network Controller with Nonlinear Disturbance Observer for Two-Axis Motion Control System”, IET Control Theory and Applications, Vol. 2, No. 2, pp. 151-167, 2008.

[6]Kim, S. B., Kim, S. H., and Kwak, Y. K., “Robust Control for a Two-Axis Gimbaled Sensor System With Multivariable Feedback Systems”, IET Control Theory and Applications, Vol. 4, Iss. 4, pp. 539-551, 2010.

[7]Nateghi, J., and Mohammadi, L., “The Comparison between the TE_21 Mode and the Four-Hom Monopulse Technique for LEO Satellite Tracking”, International Conference on Advanced Communication Technology(ICACT), Vol. 1, pp. 403-406, 2010.

[8]Singh A. K., “A low cost, low side lobe and high efficiency non-orthogonally coupled slotted waveguide array antenna for monopulse radar tracking”, Antennas and Propagation Society International Symposium, Vol. 3A, pp. 732-735, 2005.

[9]Xiaohong, W., and Teng, L., “Study on the Velocity Estimation Methods for Conical Scan Inverse-V-Shape Stepped-Frequency Signal”, International Conference on Signal Processing, Vol. 3, pp. 2102-2106, 2004.

[10]Guo X., Li, Y., Liu, F., and Long, T., “A method of improving angle precision of conical scanLFMCW radar”, Radar, International Conference on Date of Conference, pp. 2-5, 2008.

[11]Ho, C. C., Hyo, L. S., Yong, K. T., and Cheol, L., “Antenna Control System Using Step Tracking Algorithm with H Controller”, International Journal of Control Automation and Systems, Vol. 1, No. 1, pp. 83-92, 2003.

[12]Gündeş, A. N., and Nanjangud, A., “Simultaneous stabilization and step tracking for MIMO systems with LTI controllers”, Decision and Control (CDC), 49th IEEE Conference on Decision and Control(CDC), pp. 1565-1570, 2010.

[13]Gibbs, C. B., “The Effect of Minor Alcohol Stress on Decision Processes in a Step-Tracking Task”, IEEE Transactions of Human Factors in Electronics, Vol. HFE-7, pp. 145-150,1966.

[14]Hawkins, G. J., Edwards, D. J., and McGeehan, J. P., “Tracking systems for satellite communications”, IET Journals & Magazines, Radar and Signal Processing, Vol. 135, pp. 393-407, 1988.

[15]楊士徹,應用卡爾曼濾波理論於系統之估算與控制,逢甲大學,碩士論文,2006。

[16]周展毅,GPS信號遮蔽觀測於電離層斷層掃描之模擬研究,中央大學,碩士論文,2004。

[17]Chieh, C. S., Bo, C., Kun, C. L., Hui, P. H., Yuan, W. K., and Yen, T. L., “Applying International Standard for Near-Real Time Satellite scheduling Management–A Case Study of FORMOSAT-2”, 台灣地理資訊學會年會暨學術研討會, pp. 1-14, 2012.

[18]Vallado, A. D., and Crawford, P., “SGP4 Orbit Determination”, Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008.

[19]張榕瑭,重力梯度衛星姿態控制器之設計與模擬,成功大學,碩士論文,2009。

[20]張倬嘉,微衛星太空級GPS接收器酬載之製作與測試,成功大學,碩士論文,2010。

[21]Montenbruck, O., and Gill, E., ”Real-Time Estimation Of SGP4 Orbital Elements From GPS Navigation Data”, 15th International Symposium on Space Flight Dynamics, 2000.

[22]Hoots, F. R., and Roehrich, R. L. “Models for propagation of NORAD element sets”, Project Spacecraft Report No. 3, Aerospace Defense Command, United States Air Force, 1980.

[23]Lexium 23 Plus 運動控制器使用手冊,http://www.schneider-electric.com/site/
home/index.cfm/ww/,檢索於2013/4/15。

[24]NXP LPC2364操作手冊,www.keil.com/dd/docs/datashts/philips/lpc236x_ds。

[25]Figueiredo, J., “Resolver Models for Manufacturing”, Industrial Electronics, Vol. 58, pp. 3693-3700, 2011.

[26]Hanselman, D., “Signal processing techniques for improved resolver-to-digital conversion accuracy”, 16th Annual Conference of Industrial Electronics Society, Vol. 1, pp. 6-10, 1990.

[27]Hanselman, D. C., Thibodeau, R. E. and Smith, D. J., “Variable-reluctance resolver design guidelines”, 15th Annual Conference of Industrial Electronics Society, Vol. 1, pp. 203-208, 1989.

[28]Besten, G. W., “Embedded low-cost 1.2 Gb/s inter-IC serial data link in 0.35 μm CMOS”, IEEE International Conference of Solid-State Circuits, pp. 250-251, 2000.

[29]Sedzin, A., Aguilar, J., Marechal, A., O'Connor, R. and Bernasconi, E., “High-speed Inter-IC Interfacing for Mobile Multimedia Applications”, International Conference on Consumer Electronics, pp. 1-2, 2007.

[30]Kennedy, J., and Eberhart, R., “Particle Swarm Optimization”, IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948, 1995.

[31]Shi, Y., and Eberhart, R., “A modified particle swarm optimizer”, IEEE International Conference on Evolutionary Computation, pp. 69-73, 1998.

[32]Eberhart, R. C., and Hui, S. Y., “Particle swarm optimization: developments, applications and resources”, Proceedings Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.

[33]林晏田,使用剩餘影像加強特徵擷取結合SVM-PSO於人臉之辨識,國立高雄應用科技大學,碩士論文,2012。

[34]Z. X. M., and L. S. Y., “Simulation Study on Fuzzy PID Controller for DC Motor Based on DSP”, Industrial Control and Electronics Engineering(ICICEE), pp. 1628-1631, 2012.

[35]Rubaai, A., Sitiriche, M. J., and Ofoli, A., “DSP-Based Implementation of Fuzzy-PID Controller Using Genetic Optimization for High Performance Motor Drives”, Industry Applications Conference, pp. 1649-1656, 2007.

[36]Arulmozhiyal, R. and Kandiban, R., “Design of Fuzzy PID controller for Brushless DC motor”, Computer Communication and Informatics (ICCCI), pp. 1-7, 2012.

[37]Petrov, M., Ganchev, I. and Taneva, A., “Fuzzy PID control of nonlinear plants”, Intelligent Systems, Vol. 1, pp. 30-35, 2002.

[38]Korkmaz, M., Aydogdu, O., and Dogan, H., “Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller”, Innovations in Intelligent Systems and Applications (INISTA), pp. 1-5, 2012.

[39]Moradi, M. H., “New techniques for PID controller design”, Control Applications, Vol. 2, pp. 903-908, 2003.

[40]Alrijadjis, K., "Self-Tuning PID Controller based on PSO-RIW for Ultrasonic Motor", International Journal of Engineering Innovation and Management, pp. 33-40, 2012.

[41]李維平,王雅賢,江正文,粒子群最佳化演算法改良之研究,科學與工程技術期刊,pp. 51-62,2008。

[42]任子武,傘冶,陳俊風,改進PSO眼算法及在PID參數整定中應用研究,Journal of System Simulation,Vol. 18,pp. 2870-2873,2006。

[43]AU6802N1 Users Manual使用手冊,http://www.tamagawa-seiki.com/pdf/download/AU6802N1_E_Manual_DRAFT20110708.pdf,檢索於2013/4/13。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top