跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林柏村
研究生(外文):Bo-Tsuen Lin
論文名稱:3-巰基-1-丙磺酸鹽自組裝單層膜修飾奈米孔洞金電極應用於低電位沉積陽極剝除法對銅進行靈敏的電化學偵測
論文名稱(外文):Application of Self-Assembled Monolayer of (3-Mercaptopropyl) sulfonate on Nanoporous Gold for the Sensitive Electrochemical Detection of Copper via Anodic Stripping of Underpotential Deposited
指導教授:黃景帆
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:自組裝單層膜奈米孔洞金電極低電位沉積陽極剝除法
外文關鍵詞:Self-Assembled MonolayerNanoporous GoldUnderpotential DepositionAnodic stripping voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討一種新式的無汞電極材料,奈米孔洞金電極(nanoporous gold , NPG),此電極應用於剝除伏安法可增進其微量金屬分析的能力。製備方式是在40-60 mol % 氯化鋅-氯化1-乙基-3-甲基咪唑離子液體中將金/鋅合金以去合金的方式去除鋅,即得到奈米孔洞金電極。將短碳鏈的硫醇有機分子,3-巰基-1-丙磺酸鹽以自組裝單層膜的型式修飾於電極表面,藉此避免界面活性劑吸附所造成的汙染。以低電位陽極剝除法搭配修飾MPS的奈米孔洞金電極(MPS@NPG)來偵測銅離子時,奈米孔洞高表面積的特性可以提升偵測的靈敏度,而表面修飾的MPS則可避免界面活性劑的吸附影響偵測的效果。此電極製作簡便,且每完成一剝除步驟即可重製再生。此電極偵測銅離子的檢量線在兩個濃度區間有良好線性,分別為1~50 μg/L,斜率為30.50 μA/μM;0.1~1 μg/L,斜率為88.65 μA/μM,偵測極限為0.002 μg/L (31 pM)。界面活性劑干擾測試使用種類包括有非離子型(采酮X-100與吐恩-80),陰離子型(十二烷基硫酸鈉),陽離子型(十六烷基三甲基溴化銨),當使用MPS@NPG作為偵測電極時,銅離子的測定不受界面活性劑的干擾。此分析方法在偵測標準品及真實樣品的銅離子其結果符合認證數值且回收率佳。
It has described a new alternative mercury-free electrode material, nano- porous gold (NPG), was applied to improve the performance for detectionof trace metal in stripping voltammetry . The NPG electrode was obtained by the dealloying of Zn from AuxZn1-x in a 40-60 mol % zinc chloride -l-ethyl-3-methylimidazolium chloride(ZnCl2-EMIC) ionic liquid. To prevent electrode fouling from surfactant adsorption, the short carbon -chain organ- othiol molecule, (3-Mercaptopropyl)sulfonate (MPS), was selected to mod- ify on NPG electrode through the formation of self-assembled monolayer (SAM). The MPS modified NPG (MPS@NPG) electrode not only signific- antly enhanced the sensitivity in detection of Cu2+ through anodic stripping of underpotential deposits due to an intrinsic high surface area from the na- noporous structure but also effecttively prevented the electrode surface fou- ling from surfactant adsorption. The electrode is easy to prepare and can be readily renewed after each stripping experiment. In this study, we demonst- rated the dynamic range of calibration curves show very linear behaviour with slopes of 30.50 μA/μM (1-50 μg/L) and 88.65 μA/μM (0.1-1 μg/L), respectively. The detection limit is as low as 0.002 μg/L(0.031 pM). The non-ionic surfactant (Triton X-100 and Tween-80), anionic surfactant (SD S), and cationic surfactant (CTAB) were found to have no affect on detect- ion of Cu2+ by using MPS@NPG electrode as a sensing probe. This method is applied to the determination of Cu2+ in a reference material and three real water samples. The results agree satisfactorily with the certified values and
show good recoveries.
總目錄
謝誌.......................................................i
摘要......................................................ii
Abstract.................................................iii
總目錄....................................................iv
圖表目錄................................................viii
表目錄..................................................viii
圖目錄..................................................viii
縮寫表....................................................xi
符號表..................................................xiii

第一章 緒論................................................1
1-1 重金屬...............................................1
1-2 重金屬的分析.........................................2
1-3 電化學分析法.........................................5
1-4 銅離子對環境的影響..................................11
1-5 銅汙染實例..........................................13
1-6 銅離子分析方法......................................14
1-7 實驗目的與動機......................................15
第二章 原理...............................................17
2-1 自組裝單層膜........................................17
2-2 低電位沉積..........................................20
2-2-1 銅在金上的低電位沉積............................21
2-2-2 銅在自組裝單層膜修飾金電極上的低電位沉積........23
2-3 硫醇在金上的吸附....................................23
2-4 電化學方法..........................................26
2-4-1 循環伏安法......................................27
2-4-2 方波陽極剝除法..................................28
第三章 實驗部分...........................................32
3-1 實驗藥品............................................32
3-2 實驗器材與儀器設備..................................34
3-3 實驗步驟............................................36
3-3-1 電極前處理......................................36
3-3-2 實驗溶液配製....................................37
3-3-3 金電極修飾MPS...................................39
3-3-4 奈米孔洞金電極表面修飾MPS之脫附.................40
3-3-5 循環伏安法觀測銅離子訊號........................40
3-3-6 方波陽極剝除法分析銅離子........................40
3-3-7 金屬離子、界面活性劑對銅離子偵測之干擾..........41
3-3-8 真實樣品與標準品之銅離子偵測....................41
3-3-9 電化學液槽......................................43
第四章 結果與討論.........................................44
4-1 電極表面積、粗糙度計算..............................44
4-2 利用循環伏安法偵測銅在金電極上的UPD.................46
4-3 奈米孔洞金電極修飾MPS...............................46
4-4 自組合薄膜電極對銅在金上UPD之影響...................47
4-5 掃描速率對銅UPD 的影響..............................54
4-6 以方波陽極剝除法偵測銅UPD...........................55
4-6-1 調整方波陽極剝除法最佳參數......................55
4-6-2 電解質溶度濃度..................................55
4-6-3 電解質pH值......................................56
4-6-4 沉積電位........................................56
4-6-5 沉積時間........................................57
4-6-6 檢量線的製作....................................65
4-6-7 金屬離子與界面活性劑對銅離子偵測的影響..........66
4-6-8 真實樣品與標準溶液中銅離子的偵測................68
第五章 結論...............................................72
參考文獻..................................................73

圖表目錄

表目錄
表1-1 土壤污染管制標準....................................12
表1-2 飲用水水質標準......................................13
表2-1 不同自組裝單層膜分子之頭基及可吸附之基材............19
表4-1 金屬離子對銅離子偵測干擾之偏差值....................67
表4-2 自來水、飲用水、湖水樣品及標準溶液回收率............69

圖目錄
圖1-1 陽極剝除法、陰極剝除法與吸附剝除法之示意圖...........9
圖2-1 分子自組裝單層薄結構圖..............................19
圖2-2 低電位沉積及過電位沉積示意圖........................24
圖2-3 低電位沉積及過電位沉積之循環伏安圖..................25
圖2-4 Cu(upd)在Au(111)上的循環伏安圖......................25
圖2-5 硫酸根吸附在Au/Cu(upd)結構示意圖....................25
圖2-6 金屬在自組裝單層膜修飾金電極的沉積..................26
圖2-7 硫醇在不同型態金表面的吸附..........................26
圖2-8 循環伏安法電位控制圖及伏安圖........................27
圖2-9差式脈衝伏安法電位控制圖.............................29
圖2-10 方波伏安法電位控制圖...............................31
圖2-11 方波伏安法電流訊號圖...............................31
圖2-12 方波伏安圖.........................................31
圖3-1 電化學液槽裝置圖....................................43
圖3-2 奈米孔洞金電極SEM影像圖.............................43
圖4-1 奈米孔洞與平面金電極在0.5 M H2SO4 中以掃描速率200mV/s
所得的循環伏安圖....................................45
圖4-2 奈米孔洞與平面金電極在含銅及不含銅的0.1 M NaNO3以掃描
速率10mV/s所得的循環伏安圖..........................49
圖4-3 修飾MPS的奈米孔洞金電極於除氧300秒,0.5 M的NaOH中掃 描
速率10mV/s所得的循環伏安圖..........................50
圖4-4 改變MPS濃度於不同吸附時間之脫附電量趨勢圖...........51
圖4-5 修飾與未修飾MPS奈米孔洞金電極,於除氧300秒,含有1 mM
Cu2+的0.1M NaNO3中,掃描速率10 mV所得的循環伏安圖...52
圖4-6 修飾與未修飾MPS奈米孔洞金電極,於除氧300秒,0.1M NaNO3
中,掃描速率10 mV所得的循環伏安圖...................53
圖4-7 奈米孔洞金電極,於除氧300秒含有1 mM Cu2+的0.1 M NaNO3
   ,掃描速率10~200 mV/s所得的循環伏安圖...............58
圖4-8 修飾MPS的奈米孔洞金電極,於除氧300秒含有1 mM Cu2+的0.1
M NaNO3,掃描速率10~200 mV/s所得的循環伏安圖........59
圖4-9 未修飾與未修飾MPS的奈米孔洞金電極,於除氧300秒含有1 mM
Cu2+的0.1 M NaNO3,掃描速率10~200 mV/s,峰值電流與掃描
速率平方根之關係圖..................................60
圖4-10 不同濃度NaNO3溶液銅離子偵測趨勢圖..................61
圖4-11 不同pH值NaNO3溶液銅離子偵測趨勢圖..................62
圖4-12 不同沉積電位溶液銅離子偵測趨勢圖...................63
圖4-13 不同沉積時間銅離子偵測趨勢圖.......................64
圖4-14 方波陽極剝除法偵測銅離子之檢量線圖.................70
圖4-15 不同界面活性劑對修飾及未修飾MPS的奈米孔洞金電極在銅
離子偵測上的影響之趨勢圖...........................71
1. J.J. Dulka, T.H. Risby, Anal. Chem., 1976, 48, 640A.
2. H. K. AN, B. Y. PARK, D. S. KIM, Wat. Res., 2001, 35, 3551.
3. J. H. Duffus, Pure Appl. Chem., 2002, 74, 793.
4. O. A. Farghaly, M. A. Ghandour, Environ. Res., 2005, 97, 229.
5. K. L. Dreher, R. H. Jaskot, J. R. Lehmann, J. H. Richards, J. K. McGee
, A. J. Ghio, D. L. Costa, J. Toxicol. Environ. Health, 1997, 50, 85.
6. J.W. Moore, S. Ramamoorthy, “Heavy metals in natural waters :
applied monitoring and impact assessment “, Springer, New York, 1984.
7. O. Simsek, R. Gultekin, O. Oksuz, S. Kurultay. Nahrung/ Food, 2000,
44, 360.
8. R. A. A. Munoz, P. R. M. Correia, A. N. Nascimento, C. S. Silva, P.V.
Oliveira, L. Angnes, Energ. Fuel., 2007, 21, 295.
9. S. Lunvongsa, T. Takayanagi, A. Oshima, S. Motomizu, Anal.Chim.
Acta., 2006, 576, 261.
10. A. J. Rubin, ” Aqueous-Enviromental Chemistry of Metals”, ann arbor science, 1974.
11. R.C. Campos, H.R. Santos, P. Grinberg, Spectrochim. Acta, 2002, 57B, 15.
12. D. Afzali, A. Mostafavi, M. A. Taher, A. Moradian, Talanta, 2007, 71, 971.
13. H. Karami , M. F. Mousavi, Y. Yamini, M. Shamsipur, Anal. Chim. Acta, 2004, 509, 89.
14. K. S. Rao, T. P. Rao, Y. Babu, G. R. K. Naidu, Spectrochim. Acta Part B, 2002, 57, 1333.
15. J. L. Campbell, S. Faiq, R. S. Gibson, S. B. Russell, C. W. Schulte, Anal. Chem., 1981, 53, 1249.
16. S. E. Mann, M. C. Ringo, G. Shea-McCarthy, J. Penner-Hahn, C. E. Evans, Anal. Chem., 2000, 72, 1754.
17. M. Y. Khuhawar, S. N. Lanjwani, Talanta, 1996, 43, 767.
18. H. S. Amoli, A. Porgamb, Z. B. Sadr, F. Mohanazadeh, J. Chromat- ogr. A, 2006, 1118, 82.
19. M. J. Shaw, P. R. Haddad, Environ. Int., 2004, 30, 403.
20. J. Petr, S. Gerstmann, H. Frank, J. Sep. Sci., 2006, 29, 2256.
21. Z. J. Kokot, J. Matysiak, J. Pharm. Biomed. Anal., 2008, 48, 955.
22. R. R. Greenberg, H. M. Kingston, Anal. Chem., 1983, 55, 1160.
23. R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, A. L. Gray, C. E. Taylor, Anal. Chem., 1980, 52, 2283.
24. “Guidelines for Drinking-water Quality”, first addendum to third edition, World Health Organization, 2006.
25. G. Hanrahan, D. G. Patila, J. Wang, J. Environ. Monit., 2004, 6, 657.
26. G. Kefala, A. Economou, M. Sofoniou, Talanta, 2006, 68, 1013.
27. S. Yilmaz1, S. Yagmur, G. Saglikoglu, M. Sadikoglu, Int. J. Electro- chem. Sci., 2009, 4, 288.
28. E. Tesarova, L. Baldrianova, S. B. Hocevar, Electrochim. Acta, 2009, 54, 1506.
29. S. B. Hocevar, J. Wang, R. P. Deo, B. Ogorevcb, Electroanalysis, 2002, 14, 112.
30. G. Herzog, D. W. M. Arrigan, Anal. Chem., 2003, 75, 319.
31. N. P. R. Andersenl, P. Holst-Hansen, D. Britz, Anal. Chim. Acta, 1996, 329, 253.
32. C. Garnier, L. Lesven, G. Billon, A. Magnier, O. Mikkelsen, I. Pizeta, Anal. Bioanal. Chem., 2006, 386, 313.
33. M. Brand, I. Eshkenazi, E. Kirowa-Eisner, Anal. Chem., 1997, 69, 22, 4660.
34. Y. Bonfil, M. Brand, E. Kirowa-Eisner, Electroanalysis, 2003, 15, 1369.
35. M. A. Ferreira , A. A. Barros, Anal. Chim. Acta, 2002, 459 , 151.
36. O. E. Tall, N. Jaffrezic-Renault, M. Sigaud, O. Vittori, Electroanaly- sis, 2007, 19, 1152.
37. G. Herzog, D. W. M. Arrigan, Anal. Chem., 2003, 75, 319.
38. B. K. Jena, C. R. Raj, Anal. Chem., 2008, 80, 4836.
39. P. T. Kissinger, W. R. Heineman, ”Laboratory Techniques in Elec- troanalytical Chemistry”, 2nd edition, New York :Dekker, 1984.
40. J. Wang, “ Stripping Analysis”, VCH Publishers, Deerfield Beach, 1985.
41. Kh. Brainina, E. Neyman, “Electroanalytical Stripping Methods”, John Wiley and Sons Inc., New York, 1993.
42. A. J. Saterlay, C. Agra-Gutierrez, M. P. Taylor, F. Marken, R. G. Compton, Electroanalysis, 1999, 11, 1083.
43. F. A. Settle, “Handbook of Instrumental Techniques for Analytical Chemistry”, Prentice-Hall, New Jersey, 1997.
44. M. Heitzmann, L. Basaez, F. Brovelli, C. Bucher, D. Limosin, E. Pereira,B. L. Rivas, G. Royal, E. Saint-Aman, Jean-Claude Moutet, Electroanalysis, 2005, 17, 1970.
45. W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Colloid Sci., 1946, 1, 513.
46. R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc., 1983, 105, 4481.
47. A. Ulman, Chem. Rev., 1996, 96, 1533.
48. S. Zhang, C. M. Cardona, L. Echegoyen, Chem. Commun., 2006, 4461.
49. G. Herzog, D. W.M. Arrigan, Trac-Trends Anal. Chem., 2005, 24, 208.
50. A.R. Ghiasvand, R. Ghaderi, A. Kakanejadifard, Talanta, 2004, 62, 287.
51. J. D. Czachora, M. G. Cherian, J. Koropatnick, J. Inorg. Biochem., 2002, 88, 213.
52. M.S. Jeng, W.L. Jeng, T.C. Hung, C.Y. Yeh, R.J. Tseng, P. J. Meng, B.C. Han, Environ. Pollut., 2000, 110, 207.
53. J. J. Xia, W. Z. Wei, Y. B. Hu, H. Tao, L. Wu, Anal. Sci., 2004, 20, 1037.
54. Y. Bonfil, M. Brand, E. Kirowa-Eisner, Anal. Chim. Acta, 1999, 387, 85.
55. G. Herzog, D.W. M. Arrigan, Anal. Chem., 2003, 75, 319.
56. G. Herzog, D.W. M. Arrigan, Electroanalysis, 2003, 15, 1302.
57. J. Orozco, C. Fernandez-Sanchez, C. Jimenez-Jorquera, Environ. Sci. Technol., 2008, 42, 4877.
58. D. W.M. Arrigan, T. Iqbal, M. J. Pickup, Electroanalysis, 2001, 13, 751.
59. A. Berduque, Y. H. Lanyon, V. Beni, G. Herzog, Y. E. Watson, K. Rodgers, F. Stam, J. Alderman, D. W. M. Arrigan, Talanta, 2007, 71, 1022.
60. P. D. Ding, L. M. Niu, H. Q. Luo, N. B. Li, Croat. Chem. Acta, 2007, 80, 61.
61. Y. N. Jiang, H. Q. Luo, N. B. Li, Anal. Sci., 2006, 22, 1079.
62. C. Prior, C. E. Lenehan, G. S.Walker, Electroanalysis, 2006, 18, 2486.
63. M. F. de Oliveira, A. A. Saczk, L. L. Okumura, A. P. Fernandes, M. de Moraes, N. R. Stradiotto, Anal. Bioanal. Chem., 2004, 380, 135.
64. H. Sellers, A.Ulman, Y. Shnidman, J. E. Eilers, J. Am. Chem.Soc. , 1993, 115, 9389.
65. R. C. Sabapathy, S. Bhattacharyya, M. C. Leavy, W. E. Cleland, Jr., C. L. Hussey, Langmuir, 1998, 14, 124.
66. S. V. Atre, B. Liedberg, D. L. Allara, Langmuir, 1995, 11, 3882.
67. C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, A. M. Mujsce, J. Am. Chem. Soc. 1990, 112, 4301.
68. L. Haussling, H. Ringsdorf, F. J. Schmitt, W. Knoll, Langmuir, 1991, 7, 1837.
69. M. A. Schneeweiss, D. M. Kolb, phys. Stat. sol. (a), 1999, 173, 51.
70. A. Aramata, In “Modern Aspects of Electrochemistry”; J. O’M. Bockris, R. E. White, B. E. Conway, Eds. Plenum Press New York, 1997, Vol. 31, p 181.
71. V. Sudha, M. V. Sangaranarayanan, J. Chem. Sci., 2005, 117, 207.
72. E. Avci, C. Meyer, C. Donner, J. Electroanal. Chem., 2006, 589, 24.
73. E. Herrero, L. J. Bullerm, H. D. Abruna, Chem. Rev., 2001, 101, 1897.
74. T. Hachiya, H. Honbo, K. Itaya, J. Electroanal. Chem., 1991, 315, 275.
75. H. Matsumoto, J. Inukai , M. Ito, J. Electroanal. Chem., 1994, 379, 223.
76. D. Oyamatsu, S. Kuwabata, H. Yoneyama, J. Electroanal. Chem., 1999, 473, 59.
77. M. Nishizawa, T. Sunagawa, H. Yoneyama, Langmuir, 1997, 13, 5215.
78. M. V. Baker, G. K. Jennings, P. E. Laibinis, Langmuir, 2000, 16, 3288.
79. S. Y. Lin, C. H. Chen, Y. C. Chan, C. M. Lin, H.W. Chen, J. Phys.
Chem. B, 2001, 105, 4951.
80. F. P. Zamborini, J. K. Campbell, R. M. Crooks, Langmuir, 1998, 14, 640.
81. M. M.Walczak, D. D. Popenoe, R. S. Deinhammer, B. D. Lamp, C. K. Chung, M. D. Porter, Langmuir, 1991, 7, 2687.
82. M. M. Walczak, C. A. Alves, B. D. Lamp, M. D. Porter, J. Electro- anal. Chem., 1995, 396, 103.
83. S. Trasatti, O. A. Petrii, Pure Appl. Chem., 1991, 63, 711.
84. M. M. Walczak, C. A. Alves, B. D. Lamp, M. D. Porter, J. Electro- anal. Chem., 1995, 396, 103.
85. D. W. M. Arrigan, L. L. Bihan, M. J. Pickup, Analyst , 1999, 124, 1797.
86. M. Akrama, M. C. Stuart , D. K.Y. Wong, Anal. Chim. Acta, 2004, 504, 243.
87. M. Etienne, J. Bessiere, A. Walcarius, Sens. Actuator B-Chem., 76, 531.
88. A. Rahman, D. S. Park, M. S.Won, S. M. Park, Y. B. Shim, Electroanalysis, 2004, 16, 1366.
89. M. Heitzmann, L. Basaez, F. Brovelli, C. Bucher, D. Limosin, E. Pereira, B. L. Rivas, G. Royal, E. Saint-Aman , J. C. Moutet, Electro- analysis, 2005, 17, 1970.
90. A. J. Bard, “Electroanalytical Chemistry : A Series of Advances”, vol. 13, Marcel Dekker, New York, 1966.
91. C. H. Hamann, A. Hamnett, W. Vielstich, “Electrochemistry”, 2nd completely revised and updated edition, Wiley-VCH, 2007.
92. J. Zhang, “PEM Fuel Cell Electrocatalysts and Catalyst Layers”, Springer, 2008.
93. M. F. Toney, J. N. Howard, J. Richer, G. l. Borges, J. G. Gordon, O. R. Melroy, Phys. Rev. Lett., 1995, 75, 4472.
94. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, 2nd edition, Wiley, New York, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top