跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉承浩
研究生(外文):Cheng-Hao Liu
論文名稱:含奈米石墨烯之茀-噻吩共聚高分子的合成及光電性質研究
論文名稱(外文):Synthesis and Optoelectronic Properties of Poly(fluorene-alt-thiophene) Comprising Nano Graphene Sheets
指導教授:蔣見超
指導教授(外文):Chien-Chao Tsiang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:111
中文關鍵詞:有機發光二極體氧化石墨石墨烯載子遷移率
外文關鍵詞:mobilityPLEDGraphite OxideGraphene Sheets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:595
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:1
本研究將石墨酸化成氧化石墨後,再加以改質使其與合成的共軛高分子PDOFT均勻摻混並還原,形成高分子複合材料PDOFT/GS。氧化石墨的鑑定以FTIR及WAXD分析表面結構,並藉由原子力顯微鏡AFM、電子顯微鏡SEM及TEM來觀察氧化石墨的表面形貌,在HR-TEM下觀察到高分子複材PDOFT/GS中具有石墨烯晶格。另外,合成的高分子複合材料皆有良好的熱穩定性,裂解溫度均在400℃以上,由DSC分析顯示出複材沒有Tm。利用UV/Vis吸收光譜與PL放射光譜來分析高分子複材PDOFT/GS的光學性質,再探討其電性上及元件上的特性,當高分子PDOFT中有掺混石墨烯時,其載子遷移率有上升的趨勢,能有效降低元件的驅動電壓,並且使得發光效率比沒有掺混石墨烯時提高兩倍以上。
Graphite was acidified to convert to graphite oxide via the Hummers method, and the resulting exfoliated graphite oxide sheets were reduced by phenylhydrazine in the presence of conjugated polymer PDOFT to form the PDOFT/GS polymeric nanocomposite. This novel polymeric nanocomposite was characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscopy, transmission electron microscope, UV/Vis spectroscopy, photoluminescence spectroscopy and various optoelectronic instruments. TGA and DSC analyses indicate that all polymeric nanocomposites are thermally stable up to 400℃ without detectable melting points. By introducing graphene sheets into the polymer matrix, the threshold voltage of the PLED device is lowered and both of the current efficiency and the carrier mobility were improved.
中文摘要 I
Abstract II
目錄 III
圖目錄 VIII
表目錄 XII
第一章 緖論 1
1.1 前言 1
1.2 碳材鍵結 2
1.2-1 石墨 3
1.2-2 鑽石 4
1.2-3 C60 4
1.3 有機發光二極體發光原理 5
1.3-1 螢光的成因 5
1.3-2電激發光原理 8
1.3-3 能帶結構 10
1.3-4 高分子發光二極體內部電荷 11
1.4 高分子發光二極體元件結構 12
第二章 文獻回顧 16
2.1 碳系 16
2.1-1石墨烯(graphene sheets) 17
2.2 應用於發光二極體之高分子 20
2.2-1 不同光色高分子的化學結構與其光物理 22
2.2-2 PPV系高分子 23
2.2-3 PPP系高分子 24
2.2-4 PF系高分子 25
2.2-5 PT系高分子 27
2.3 研究動機與目的 28
第三章 實驗內容與儀器分析 29
3.1 實驗藥品 29
3.2 實驗設備與分析儀器 31
3.3 儀器分析 34
3.3-1 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 34
3.3-2 核磁共振儀(Nuclear Magnetic Resonance Spectrometer, NMR) 36
3.3-3 傳立葉轉換—紅外線光譜分析 (FT-IR ) 36
3.3-4 調幅式微差掃描熱分析儀 (Modulated Differential Scanning Calorimetry,MDSC) 38
3.3-5 熱重分析儀(Thermogravimetric Analyzer,TGA) 43
3.3-6 原子力顯微鏡(Atomic Force Microscope, AFM) 44
3.3-7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 45
3.3-8 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 45
3.3-9 紫外光-可見外吸收光譜儀(UV/Vis spectroscopy, UV/Vis) 46
3.3-10 光激發光螢光光譜儀(Photoluminescence, PL)與電激發光光譜儀(Electroluminescence, EL) 48
3.3-11 螢光相對量子效率(Quantum Efficiency) 49
3.3-12 循環伏特安培儀(Cyclic Voltammeter , CV) 50
3.3-13 電特性分析儀(Current-Voltage Curve) 51
3.3-14 四點探針(Four-Probe) 52
3.3 合成反應原理 53
3.3-1 Suzuki cross-coupling reaction 53
3.3-2 高分子合成反應步驟與結果 55
3.3-3 石墨氧化剝落形成薄片(GO) 57
3.3-4 氧化石墨氯化(GO-COCl) 58
3.3-5 以化學還原法製備PDOFT/graphene sheets奈米複合材料 59
第四章?結果與討論 60
4.1 前言 60
4.2 石墨酸化及改質之結構分析 61
4.2-1 FTIR分析研究 61
4.2-2 WAXD分析研究 64
4.3 石墨改質及複材PDOFT/GS物性分析 65
4.3-1 高分子分子量及複材溶解度測試 65
4.3-2 原子力顯微鏡(AFM)分析研究 67
4.3-3 掃描式電子顯微鏡(SEM)分析研究 70
4.3-4 穿透式電子顯微鏡(TEM)分析研究 74
4.4 石墨改質及複材PDOFT/GS熱性質分析 78
4.4-1 熱重分析(TGA) 78
4.4-2 調幅式微差掃瞄(MDSC)熱分析 81
4.5 複材PDOFT/GS之光學性質分析研究 83
4.5-1 UV/Vis吸收光譜研究分析 83
4.5-2 PL放射光譜分析 84
4.6 複材PDOFT/GS之電化學性質分析研究 88
4.6-1四點探針(Four-Probe) 88
4.6-1循環伏安法(Cyclic Voltammetry,CV) 90
4.7 元件製作及性能測試 94
4.7-1元件製作 94
4.7-2 EL放射光譜 95
4.7-3 電流密度(I)-電壓(V)-亮度(L)圖分析研究 96
4.7-4導納頻譜(Admittance Spectroscopy) 99
第五章 結論 103
參考文獻 105
1.Jinsong Huang, Gang Li, and Yang Yang. Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends. Applied Physics Letters; 2005, 87, 112105.
2.A. K. Geim AND K. S. Novoselov. The rise of grapheme.Nature Materials; 2007, 6, 183.
3.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,1Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films. Science; 2004, 306, 666.
4.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene Nature; 2005, 438, 197.
5.M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nature Phys; 2006, 2, 620.
6.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, Eri.c J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature; 2006, 442, 282.
7.H. Shi , J. Barker, M.Y. SaYdi, R. Koksbang, L. Morris. Graphite structure and lithium intercalation. Journal of Power Sources; 1997, 68, 291-295.
8.陳志宏,國立中正大學機電光整合工程研究所碩士論文,「高分子發光二極體元件結構對電激發光特性之影響」,國立中正大學(2004).
9.張晉誠,國立中正大學物理研究所碩士論文,「雙團連式共聚物於高分子發光二極體之研究」,國立中正大學 (2006)
10.Chang-Lyoul Lee, Kyung Bok Lee, Jang-Joo Kim, Appl. Phys. Lett; 2000, 77, 2280-2282.
11.Li Yang, Ji-Kang Feng, Ai-Min Ren, Journal of Computational Chemistry; 2005, 26, 969-979.
12.I. D. Parker, J. Appl. Phys; 1994, 75, 1656.
13.A. J. Heeger, I. D. Parker and Y. Yang, Synth. Met; 1994, 67, 23.
14.M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys; 1963, 38, 2024.
15.T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J.Feast, Appl. Phys. Lett; 1999, 75, 1679.
16.T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takazoe, and A.Fukuda, Appl. Phys. Lett; 1996, 68, 2346.
17.H. J. Naarmann, Poly. Sci., Poly.Symp; 1993, 75, 53.
18.Kroto,H..W.;Heath,J.R.;O’Brien,S.C.;Smalley,R.E.Nature; 1985,318,162.
19.Baum,R.,Chem.Eng.New1996,74(42),7.Chem Eng.New1997,75(1)29
20.Iijima,S.,Nature ; 1991,354,56
21.Nam Sung Cho, Do-Hoon Hwang, Byung-Jun Jung, Eunhee Lim, Jaemin Lee, Hong-Ku Shim, Macromolecules; 2004, 37, 5265-5273.
22.Qiang Peng, Zhi-Yun Lu, Yan Huang, Ming-Gui Xie, Shao-Hu Han, Jun-Biao Peng, Yong Cao, Macromolecules; 2004, 37, 260-266.
23.Jian Pei, Xiao-Lin Liu, Wang-Lin Yu, Yee-Hing Lai, Yu-Hua Niu, Yong Cao, Macromolecules; 2002, 35, 7274-7280.
24.Serge Beaupre, Mario Leclerc, Adv. Funct. Mater; 2002, 12, 192-196.
25.Nam Sung Cho, Do-Hoon Hwang, Jeong-Ik Lee, Byung-Jun Jung, Hong-Ku Shim, Macromolecules; 2002, 35, 1224-1228.
26.Eunhee Lim, Young Mi Kim, Jeong-Ik Lee, Byung-Jun Jung, Nam Sung Cho, Jaemin Lee, Lee-Mi Do, Hong-Ku Shim, Journal of Polymer Science:Part A:Polymer Chemistry; 2006, 44, 4709-4721.
27.Richard D. Champion, Kai-Fang Cheng, Chia-Ling Pai, Wen-Chang Chen, Samson A. Jenekhe, Macromol. Rapid Commun; 2005, 26, 1835-1840.
28.Zhenan Bao, Andrew J. Lovinger, Chem. Mater; 1999, 11, 2607-2612.
29.Achmad Zen, Marina Saphiannikova, Dieter Neher, Udom Asawapirom, Ullrich Scherf, Chem. Mater; 2005, 17, 781-786.
30.Rahul Singhal, Asha Chaubey, Keiichi Kaneto, W. Takashima, B. D. Malhotra, Biotechnology and Bioengineering; 2004, 85, 277-282.
31.Barry C. Thompson, Young-Gi Kim, Tracy D. McCarley, John R. Reynolds, J. AM. CHEM. SOC; 2006, 128, 12714-12725.
32.Chenjun Shi, Yan Yao, Yang Yang, Qibing Pei, J. AM. CHEM. SOC; 2006, 128, 8980-8986.
33.Bin Liu, Wang-Lin Yu, Yee-Hing Lai, Wei Huang, Chem. Mater; 2001, 13, 1984-1991.
34.M. R. Andersson, M. Berggren, O. Ingankis, G. Gustafsson, J. C. Gustafsson-Carlber, D. Selse, T. Hjertberg, O. Wennerstrtim, Macromolecules; 1995, 28, 7525-7529.
35.Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules; 1993, 26, 1188-1190.
36.Ki-Dong Kim, Jin-Sung Park, Hwan Kyu Kim, Macromolecules; 1998, 31, 7267-7272.
37.Sheng-Han Wu, Chi-Hsien Shen, Jar-Hung Chen, Chia-Chen Hsu, Raymond Chien-Chao Tsiang, Journal of Polymer Science:Part A:Polymer Chemistry; 2004, 42, 3954-3966.
38.Sheng-Han Wu, Jar-Hung Chen, Chi-Hsien Shen, Chia-Chen Hsu, Raymond Chien-Chao Tsiang, Journal of Polymer Sciene:Part A:Polymer Chemistry; 2004, 42, 6061-6070.
39.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature; 1990, 347, 539.
40.D. Braun, A. J. Heeger, Appl. Phys. Lett; 1991, 58, 1982-1984.
41.Fushun Liang, Takashi Kurata, Hiroyuki Nishide, Junji Kido, Journal of Polymer Science:Part A:Polymer Chemistry; 2005, 43, 5765-5773.
42.Sang Ho Lee, Bo-Bin Jang, Tetsuo Tsutsui, Macromolecules; 2002, 35, 1356-1364.
43.V. Percec, Jin-Young Bae, Mingyang Zhao, Dale H. Hill, Macromolecules; 1995, 28, 6726-6734.
44.Tae Hyung Rhee, Taeyoung Choi, Eun Young Chung, Dong Hack Suh, Macromol. Chem. Phys; 2001, 202, 906-910.
45.Y. Yang, Q. Pei, A. J. Hegger, J. Appl. Phys; 1996, 79, 934-939.
46.Emil J. W. List, Roland Guentner, Patricia Scanducci de Freitas, Ullrich Scherf, Adv. Mater; 2002, 14, 374-378.
47.Josemon Jacob, Jingying Zhang, Andrew C. Grimsdale, Klaus Mullen, Martin Gaal, Emil J. W. List, Macromolecules; 2003, 36, 8240-8245.
48.Petra Herguth, Xuezhong Jiang, Michelle S. Liu, Alex K. Y. Jen, Macromolecules; 2002, 35, 6094-6100.
49.M. Berggren, O. Inganas, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, O. Wennerstrom, Nature; 1994, 372, 444.
50.Jian Pei, Wang-Lin Yu, Wei Huang, Alan J. Heeger, Macromolecules; 2000, 33, 2462-2471.
51.Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature ; 2005, 438, 201-204.
52.Zhang, Y., Small, J. P., Amori, M. E. S. & Kim, P. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett; 2005, 94, 176803.
53.Berger, C. et al. Ultrathin epitaxial graphite: two-dimensional electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B; 2004, 108, 19912-19916.
54.Brodie BC. On the atomic weight of graphite. Phil Trans Roy SocLondon; 1859;149:249–59.
55.Brodie BC. Sur le poids atomique du graphite. Ann Chim Phys; 1860;59:466–72.
56.Staudenmaier L. Verfahren zur darstellung der graphitsaure. BerDtsch Chem Ges; 1898;31:1481–99.
57.Hummers WS. Preparation of graphitic acid. US Patent 2798878, 1957.
58.Hummers W, Offeman R. Preparation of graphitic oxide. J Am ChemSoc; 1958;80:1339.
59.Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon; 2005;43(3):641–9.
60.Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-filmparticles of graphite oxide 1: High-yield synthesis and flexibility of theparticles. Carbon; 2004;42(14):2929–37.
61.Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon.Solution Properties of Graphite and Graphene. J. AM. CHEM. SOC; 2006, 128, 7720-7721.
62.Sasha Stankovich, Dmitriy A. Dikin a, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen, Rodney S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon; 2007, 45 1558–1565.
63.Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reductionof exfoliated graphite oxide in the presence of poly(sodium4-styrenesulfonate). J Mater Chem; 2005;16(2):155–8.
64.J. C. Anderson, H. Namli and C. A. Robert, “Investigation into ambient temperature biaryl coupling reactions”, Tetrahedron; 1997, 53, 15123.
65.Tama´s Szabo´, Otto´ Berkesi, Pe´ter Forgo´, Katalin Josepovits, Yiannis Sanakis, Dimitris Petridis, and Imre De´ka´ny, Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater; 2006, 18, 2740-2749.
66.Jeong H K, Lee Y P, Park M H, Ruoff R S. Evidence of Nearly Flat Layers and AB Stacking Order of Graphite Oxides. J. AM. CHEM. SOC; 2008, 130, 1362-1366.
67.Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Hiroaki Sai,Margarita Herrera-Alonso, Douglas H. Adamson, Robert K. Prud’homme, Roberto Car,Dudley A.Saville, and Ilhan A. Aksay. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B; 2006, 11, 8535-8539
68.沈泓睿,國立中正大學化學工程研究所碩士論文,「主鏈含不同孤立發光團之共軛高分子的合成與性質研究」,國立中正大學 (2004)
69.H. Eckhardt, L. W. Shacklette, K. Y. Jen, R. L. Elsenbaumer. The electronic and electrochemical properties of poly(phenylene vinylenes) and poly(thienylene vinylenes): An experimental and theoretical study. J. Chem. Phys; 1989, 91, 1303.
70.H. C. F. Martens, W. F. Pasveer, H. B. Brom, J. N. Huiberts, and P. W. M. Blom, Phys. Rev. B; 2001, 63, 125328.
71.M. A. L. A. P. Mark, Current Injection in Solids (Academic, New York,1970).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊