跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 15:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱憲章
研究生(外文):Hsien-Chang Chiu
論文名稱:聚矽氧烷/聚醚-氨基甲酸酯共聚合體之熱衰解特性
論文名稱(外文):Thermal Degradation Characteristics of Siloxane-Ether Urethane Copolymer
指導教授:曾雯卿
指導教授(外文):Wen-Ching Tesng
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:聚矽氧烷聚醚-氨基甲酸酯活化能
外文關鍵詞:Ozawaurethane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本文合成聚矽氧烷/聚醚-氨基甲酸酯(PDMS/PTMG-PU)與聚矽氧烷/聚醚-氨基甲酸酯-醯亞胺(PDMS/PTMG-PUIM)兩系列共聚合體,其硬鏈結為4,4’-二苯甲基二異氰酸鹽(MDI)與鏈延長劑1,4-丁二醇(1,4-BD)或MDI與鏈延長劑3’,3’,4’4’-二苯基四羧酸二酸酐(DSDA);而以聚二甲基矽氧烷(PDMS)與聚丁醚二醇(PTMG)為混合軟鏈結。由TGA測試顯示所有共聚合體均可明顯區分出兩階段衰解,第一階段為硬鏈結氨基甲酸酯基團的衰解所致,而本研究中共聚合體的氨基甲酸酯基團因末端結構不同,可區分為MDI與1,4-BD所組成的urethane-B、MDI與PDMS所組成的urethane-S及MDI與PTMG所組成的urethane-G,此三種氨基甲酸酯基團於TG與DTG曲線可明顯看出其個別的衰解區域,經Ozawa方法計算發現其也具有不同衰解活化能。蒂二階段為軟鏈結PDMS與PTMG的衰解破斷所致,因兩種軟鏈結混合比例不同,不是所有樣品均會展現兩個衰解區域。PDMS的衰解是經矽氧烷鍵交換反應產生環狀的寡聚合體,而環狀寡聚合體會再經過矽氧烷鍵交換反應形成的高分子量環狀物,所以高PDMS含量的共聚合體於更高溫下會出現高分子量環狀物的衰解。由TG-IR分析可知PDMS/PTMG-PU共聚合體的衰解為urethane-B與urethane-G的解縮合、PTMG鏈節的自由基衰解以及PDMS之裂解與PDMS高分子量環狀物裂解過程。PDMS/PTMG-PUIM共聚合體的衰解過程分別為urethane-G、醯亞胺鏈節、PTMG以及PDMS的裂解與高分子量環狀物的裂解。
Siloxane-ether urethane (PDMS/PTMG-PU) and siloxane-ether-imide urethane (PDMS/PTMG-PUIM) copolymers were synthesized in this study. The hard segments consisted of 4,4-diphenylmethane diisocyanate (MDI) and 1,4-butane diol (1,4-BD) or MDI and 3,3’,4,4’-diphenylsulfone tetracarboxylic dianhydride (DSDA). The soft segments were mixture of poly(tetramethylene glycol) (PTMG) and polydimethylsiloxane diol (PDMS). TGA measurement indicated that the degradations of copolymers were obviously distinguished into two stages. The degradation in the first stage was the decomposition of urethane hard segments. The urethane segments were composed of urethane-B (MDI and 1,4-BD ), urethane-S (MDI and PDMS) and urethane-G (MDI and PTMG) due to the various structures. The TG and DTG curves showed individual degradation region of these urethane segments. They also presented various activation energies calculated by Ozawa method. The degradation in the second stage was breakdown of PDMS and PTMG soft segments. The degradation of two soft segments was unable to discriminate absolutely due to the mixing ratios of PDMS and PTMG. The degradation of PDMS produced cyclics by interaction of siloxane bonds. The interactions among cylics formed macrocyclics. The degradation of copolymers with high PDMS content in the range of high temperature emerged the degradation behavior of macrocyclics. TG-IR analysis exhibited that the degradation of PDMS/PTMG-PU copolymer were along the sequences of urethane-B and urethane-G, PTMG and PDMS, macrocyclics. These for PDMS/PTMG-PUIM copolymer were urethane-G, imide, PTMG and PDMS, macrocyclics.
目 錄
中文摘要……………………………………...………………..Ⅰ
英文摘要………………………………………………………...Ⅱ
誌謝……………………………………….………………..……Ⅲ
目錄………………………………………………………….…..Ⅳ
表目錄……………………………..………….…….….......Ⅵ
圖目錄…………………………………...……………………..Ⅶ
第一章 前言…………………………………………….…...1
1.1研究背景……………………………………….............1
1.2研究目的……………………………………….............2
1.3文獻回顧……………………………………….............3
1.3.1聚氨基甲酸酯結構型態.............................3
1.3.2聚氨基甲酸酯的熱穩定性與衰解.....................4
第二章 實驗…………………………………………..………….8
2.1實驗材料…………………………………………....8
2.1.1單體……………………………………..…….8
2.1.2溶劑系統………………………………..….…9
2.1.3催化劑……………………………………...…9
2.2儀器設備……………………………………….…..10
2.3實驗流程……………………………………….…..11
2.4聚氨基甲酸酯共聚合體合成……………………...12
2.4.1聚矽氧烷/聚醚-氨基甲酸酯(PDMS/PTMG-PU)共聚合體製備.12
2.4.2聚矽氧烷/聚醚-氨基甲酸酯-醯亞胺(PDMS/PTMG-PUIM)共聚合體製備...................................15
2.5實驗測試…………………………………………..........19
2.5.1霍氏紅外線光譜分析(FTIR)……………....19
2.5.2熱重損失分析(TGA)………………………...19
2.5.3熱重分析-霍氏紅外線光譜(TG-FTIR)測試..19
第三章 結果與討論
3.1共聚合體結構分析………………………………….20
3.2聚矽氧烷/聚醚-氨基甲酸酯(PDMS/PTMG-PU)共聚合體
衰解特性分析.........................................24
3.2.1 PTMG與PDMS為軟鏈節之聚氨機甲酸酯共聚合體
衰解特性.............................................24
3.2.2 PDMS/PTMG-PU共聚合體衰解特性...................29
3.2.3硬鏈節含量在PDMS/PTMG-PU共聚合體衰解的影
響...................................................34

3.3 PDMS/PTMG-PUIM共聚合體衰解特性...................37
3.3.1 PTMG與PDMS為軟鏈節之聚氨基甲酸酯-醯亞胺
共聚合體衰解特性.....................................38
3.3.2 PDMS/PTMG-PUIM共聚合體衰解特性.................41
3.3.3醯亞胺鏈段含量在PDMS/PTMG-PUIM共聚合體衰
解的影響.............................................44
3.4熱重-紅外線光譜(TG-IR)分析.................48
3.5動力學分析……….……………………………..…54
第四章 結論……………………………………….…………...58
第五章 參考文獻……………………………………………....60

表 目 錄

表2.1 PDMS/PTMG-PU共聚合體合成比例、成份.............14
表2.2 PDMS/PTMG-PUIM共聚合體合成比例、成份...........17
表3.1 為PDMS/PTMG-PU各樣品在不同失重率下的衰解活化能.57
表3.2 為PDMS/PTMG-PUIM各樣品在不同失重率下的衰解活化能57

圖 目 錄

圖1.1純硬鏈節之聚氨基甲酸酯(MDI+1,4-BD)裂解機構[29]...7
圖2.1 合成反應裝置…………………………………………….10
圖2.2 實驗流程圖……………………………………………….11
圖2.3以1,4-BD為鏈延長劑之聚二甲基矽氧烷/聚醚-氨
基甲酸酯(PDMS/PTMG-PU)共聚合體反應...................13
圖2.4 以3’,3’,4’4’-二苯基四羧酸二酸酐聚矽氧烷/聚醚-氨
基甲酸酯-醯亞胺(PDMS/PTMG-PUIM)共聚合體反應…........16
圖2.5 PDMS/PTMG-PU與PDMS/PTMG-PUIM共聚合體共
聚合體之硬鏈節鏈節與軟鏈節結構.......................18
圖3.1-1 OHBD-40樣品的H1核磁共振光譜..................21
圖3.1-2 OHPD-40樣品的H1核磁共振光譜..................22
圖3.1-3 OHBD-40樣品的C13核磁共振光譜.................22
圖3.1-4 OHPD-40樣品的C13核磁共振光譜.................23
圖3.2.1-1 OHBD-21樣品之TG與DTG曲線……………………...26
圖3.2.1-2 OHBD-25樣品之TG與DTG曲線……………………...27
圖3.2.1-3直鏈狀PDMS之矽氧烷鍵交換反應(a)分子
鏈間反應造成較寬分子量分佈(b)分子鏈內
反應產生環狀寡聚合物[22]…………………………….......28
圖3.2.1-4 環狀PDMS矽氧烷鍵交換反應(a)分子鏈間
反應造成高分子量環狀聚合物(b)分子鏈內
反應產生環狀寡聚合物[22]…………………………….......28
圖3.2.2-1 OHBD-22樣品之TG/DTG曲線………………………..31
圖3.2.2-2 OHBD-23樣品之TG/DTG曲線………………………..32
圖3.2.2-3 OHBD-24樣品之TG/DTG曲線……………….……….32
圖3.2.2-4 PTMG2000之TG/DTG曲線………………………….…33
圖3.2.2-5 PDMS1800之TG/DTG曲線…………………………….33
圖3.2.3-1 OHBD-23樣品之TG/DTG曲線………………………..35
圖3.2.3-2 OHBD-30樣品之TG/DTG曲線………………………..36
圖3.2.3-3 OHBD-40樣品之TG/DTG曲線………………………..36
圖3.3.1-1 OHPD-21樣品之TG/DTG曲線……………………....40
圖3.3.1-2 OHPD-25樣品之TG/DTG曲線………………………..40
圖3.3.2-1 OHPD-22樣品之TG/DTG曲線………………………..42
圖3.3.2-2 OHPD-23樣品之TG/DTG曲線……………………..…43
圖3.3.2-3 OHPD-24樣品之TG/DTG曲線………………………..43
圖3.3.3-1 OHPD-23樣品之TG/DTG曲線....................46
圖3.3.3-2 OHPD-30樣品之TG/DTG曲線………………………..46
圖3.3.3-3 OHPD-40樣品之TG/DTG曲線………………………..47
圖3.4-1 OHBD-21樣品在不同衰解溫度下之IR圖
(a)331℃(b)345℃(c)376℃(d)452℃(e)523℃(f)565℃................................................50
圖3.4-2 OHBD-25樣品在不同衰解溫度下之IR圖
(a)333℃(b)361℃(c)418℃(d)493℃.....................51
圖3.4-3 OHPD-21樣品在不同衰解溫度下之IR圖
(a)350℃(b)390℃(c)465℃(d)551℃(e)611℃............52
圖3.4-4 OHPD-25樣品在不同衰解溫度下之IR圖
(a)366℃(b)383℃(c)429℃……………………………………53

1. Hepburn, C., ”Polyurethane Elastomers”, Applied Science Publishers, London and New York, 1982,pp.1~2
2. Woods, G, ”The ICI Polyurethanes Book”, Published jointly by I.C.I and John Wiley & Sons, 1987, pp.1~6.
3. Oertel, G., “Polyurethane Handbook”, Hanser Publisher, Munich Vienna New York, 1985, pp.1~6
4. Boretos JH, Pierce WS. applications. Science, 1967,158, 1481
5. Speckhard T. A.; Cooper, S. L. Rubber Chem. Technol. 1986, 59, 405
6. Cooper, S. L. et. al, J. Macromol. Sci. Phys. 1984, 23,175
7. Cooper, S. L. et. al, J. Macromol. Chem. 1983, 184,651
8. Knutson, K. J. Polym. Sci. Polym. Chem. Ed. 15, 1977,1655
9. Matton, W. and Schneider, N. S., Pplom. Eng. Sci. 1979,19, 1122
10. Smith, T. L. and Dickie, R. A., J. Polym. Sci. Part C, 196926, 163
11. Lin, M. F.; Shu, Y. C.; Tsen, W. C.; Chuang, F. S. Polym. Int. 1999, 48, 433.
12. Ming-Fung Lin,Yao-Chi Shu, Wen-Chi Tsen, Fu-Sheng Chuang, J. Appl. Sci. 81, 3489(2001)
13. Yang, H. H., “Aromatic High-Strength Fiber”, JOHN WILEY & SONS, New York, 1989, pp.702~722.
14. Ozawa, T., Bull. Chem. Soc. Jpn., 1965, 38, 1881.
15. Estes, G. M.; Cooper, S. L.; Tobolsky, A. V. J. Macromol. Sci. Rev. Macromol. Chem. 1970, 4, 313.
16. Schneider, N. S.; Desper, C. R.; Illinger, J. L.; King, A. O. J. Macromol. Sci. Phys. 1975, B11, 527.
17. Van Bogart, J. W. C.; Lilaonitkul, A.; Lerner, L.; Cooper, S. L. J. Macromol. Sci, Phys. 1983, B17, 267
18. Van Bogart, J. W. C.; Gibson, P. E.; Cooper, S. L. Polym. Sci. Polym. Phys. 1983, 21, 65.
19. Speckhard, T. A.; Ver Strate, G.; Gibson, P. E.; Cooper, S. L. Polym. Eng. Sci. 1983, 23, 337.
20. Xu, M.; Macknight, W. J.; Chen, C. H. Y.; Thomas, E. L. Polymer 1983, 24, 1327.
21. Arnold, Jr. C. J. Elast. Plast. 1974, 6, 238.
22. Masiulanis, B.; Zielinski, R. J. Appl. Polym. Sci. 1985, 30, 2731.
23. Matuszak, M. L.; Frisch, K. C., J.Polym. Sci.Polym.Chem. Ed., 1973, 11,637.
24. Saunders, J. H. Rubber Chem. Technol., 1959,32, 337
25. Lyman, D. J.; Sadri, N. Macromol. Chem., 1963,67, 1
26. Saunders, J. H.; Buckus, J. K. Rubber Chem. Technol. 1966, 39, 461.
27. Ferguson, J.; Petroviĉ, Z. Eur. Polym. J. 1976, 12,.177
28. Grassie, N.; Zulfiqar, M. J. Polym. Sci., Chem. Ed., 1978, 16, 1563.
29. Ballistreri, A.; Foti, S., Maravigna, P.; Montaudo, G.; Scamporrino, E. J.Polym. Sci. Polym. Chem.Ed., 1980,18,1923.
30. Gaboriaud, F.; Vantelon, J. P. J. Polym. Sci., Polym. Chem. Ed., 1982, 20, 2063.
31. Petroviĉ, S. Z.; Zavargo, Z.; Flynn, J. H.; Macknight, J. W. J. Appl. Polym. Sci., 1994, 51, 1087.
32. Lin,M. F., Shu, Y. C. Tsen, W. C., Chuang, F. S., J. Appl. Polym. Sci., 2001, 81, 3489.
33. Fu-Sheng Chuang, Wen-Chi, Tsen Yao-Chi Shu,” The effect of differential siloxane chain-extenders on the thermal degradation stability of segmented polyurethane”, Polym. Degrad. Stab. 2004, Vol.84, 69~77
34. Bannister, D. J., Semlyen, J. A., Polymer, 1981, 22, 377.
35. Ferguson, J.; Petroviĉ, Z. Eur. Polym. J. 1976, 12,177

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top