跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/15 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂韋霆
研究生(外文):Wei-Ting Lu
論文名稱:以波特蘭I型水泥為基底混摻脫硫渣改質物與SiO2製備電解液並成長鈍化膜於鎂合金表面以提升其抗腐蝕能力之研究
論文名稱(外文):Forming passivation film on AZ91D Mg alloy in a solution prepared by Ordinary Portland cement containing modified desulfurization slag/SiO2
指導教授:汪俊延
指導教授(外文):Jun-Yen Uan
口試委員:王建義林宏茂葉建弦
口試委員(外文):Jian-Yih WangHung-Mao LinChien-hsuan Yeh
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:AZ91D鎂合金脫硫渣抗腐蝕鈍化膜
外文關鍵詞:AZ91D magnesium alloydesulfurization slaganti-corrosionpassivation film
相關次數:
  • 被引用被引用:2
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用定電位法,以波特蘭I型水泥粉末(代號C)作為基底混參脫硫渣改質物(代號M)與SiO2(代號S)粉末製備鹼性電解液,於AZ91D表面成長鈍化膜,以提升其抗腐蝕性能。極化試驗結果顯示,AZ91D表面在C+12S與C+12S+30M鹼性水溶液中其陽極曲線皆有鈍化的現象產生,鈍化區間隨C+12S與C+12S+30M添加量的增加而減少,而硫酸根離子隨著C+12S與C+12S+30M添加量的增加而增加,導致鈍化膜被破壞。當定電位試驗之電位為-1.25V,試驗溫度為室溫,鎂合金表面成長一淡金色的鈍化膜。將鈍化膜進行極化試驗,試驗結果顯示鈍化膜的腐蝕電流密度由115 mAcm-2(AZ91D)降至8.836 mAcm-2。將定電位試驗溫度由室溫提高至50°C,鈍化膜的腐蝕電流密度由8.836 mAcm-2降至4.673 mAcm-2,顯示溫度有助於成長鈍化膜。此外,鈍化膜成長於不同表面粗糙度的基材會影響鈍化膜的抗腐蝕性能。經穿透式電子顯微鏡觀察鈍化膜厚度約為50 nm。經接觸角分析,基材的接觸角為25°,鈍化膜的接觸角為64°,顯示鈍化膜對於基材來說疏水性相對較高。經鹽霧試驗,鈍化膜抵抗鹽霧試驗的時間可長達48小時才開始有大面積腐蝕斑點產生。綜合以上研究顯示,鈍化膜可以保留鎂合金金屬原色,並具有表面改質的能力,同時提升AZ91D鎂合金表面的抗腐蝕能力。
Passivation film on surface of AZ91D Mg alloy is prepared by electrochemical method, using Ordinary Portland cement (code C) containing modified desulfurization slag (code M) and SiO2 (code S). The results of polarization test show that there is a passivation phenomena for AZ91D in C+12S and C+12S+30M alkaline aqueous solution. The passivation interval decrease with increasing of C+12S and C+12S+30M contents. Amount of sulphate ion increase with increasing of C+12S and C+12S+30M contents, which leads to the destruction of the passivation film. There is a golden passivation film formed on the surface of AZ91D after potentiostatic polarization test at room temperature. The results of polarization test show that the corrosion density of the passivation film drop from 115 mAcm-2(AZ91D) to 8.836 mAcm-2. After raising the temperature of potentiostatic polarization test from room temperature to 50°C, the corrosion density of passivation film drop from 8.836 mAcm-2 to 4.673 mAcm-2, which indicate that the temperature aiding the growth of passivation film. In addition, by changed the surface roughness of substrate before forming the passivation film affect the surface corrosion resistance. The thickness of passivation film is about 50 nm obtained by transmission electron microscope. Contact angle analysis show that the contact angle of passivation film is 64°, which is relative hydrophobic compared to substrate (25°). Salt spray test show that the anti-salt spray time of passivation film is improved to 48 hour. The studies show that passivation film retains the primary color of magnesium alloy and has the ability to modify the surface of AZ91D, while enhancing the surface corrosion resistance.
摘要 i
ABSTRACT ii
第一章 前言 1
第二章 實驗步驟與方法 5
2-1 鎂合金試片 5
2-2 水泥混和物粉末製備 5
2-3 脫硫渣改質物製備 5
2-5 結構及成份分析 6
2-6 電化學定電位試驗 6
2-7 電化學極化試驗 7
2-8 離子層析試驗 8
2-9 鹽霧試驗 8
2-10 表面接觸角分析 8
第二章 結果與討論 9
3-1 C+12S / C+12S+30M粉末結構特性分析 9
3-2 AZ91D表面於C+12S / C+12S+30M鹼性電解液中鈍化性質之研究 9
3-3 AZ91D表面於C+12S / C+12S+30M鹼性電解液中成長鈍化膜之研究 10
3-4 AZ91D表面於C+12S / C+12S+30M鹼性電解液中成長鈍化膜其抗腐蝕特性之研究 11
第四章 結論 14
參考文獻 48
[1] J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner and E. Bard," Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation," Nature, vol. 484, pp. 49-54, .
[2] Y. Kaya, K. Yamaji and R. Matsuhashi, "A grand strategy for global warming," Tokyo Conference on Global Environment, 1989.
[3]H. C. Kim and T. J. Wallington (2013), "Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization," Environmental science & technology, vol. 47, pp. 6089-6097, 2013.
[4] C. Koffler and K. Rohde-Brandenburger, "On the calculation of fuel savings through lightweight design in automotive life cycle assessments," The International Journal of Life Cycle Assessment, vol. 15, pp. 128-135, 2010.
[5]H. Wallentowitz, "Structural design of vehicles," Institute fur Kraftfahrwesen, Aachen, 2004.
[6] F. Froes, H. Friedrich, J. Kiese and D. Bergoint, "Titanium in the family automobile: the cost challenge," JOM Journal of the Minerals, Metals and Materials Society, vol. 56, pp. 40-44, 2004.
[7]M. Kleiner, M. Geiger and A. Klaus, "Manufacturing of lightweight components by metal forming," CIRP Annals-Manufacturing Technology, vol. 52, pp. 521-542.
[8]I. Shigematsu, M. Nakamura, N. Saitou and K. Shimojima, "Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating," Journal of Materials Science Letters, vol. 19, pp. 473-475, 2000.
[9]S. Lee, S. Lee, and D. Kim, "Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys," Metallurgical and Materials Transactions A, vol. 29, pp. 1221-1235, 1998.
[10]B. L. Mordike and T. Ebert, "Magnesium: Properties — applications — potential," Materials Science and Engineering: A, vol. 302, pp. 37-45, 2001.
[11]Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, and N. Bekku, "Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys," Materials Science and Engineering: A, vol. 434, pp. 131-140, 2006.
[12] A. A. Luo, "Magnesium casting technology for structural applications," Journal of Magnesium and Alloys, vol. 1, pp. 2-22, 2013.
[13]M. K. Kulekci, "Magnesium and its alloys applications in automotive industry, "The International Journal of Advanced Manufacturing Technology, vol. 39.9, pp. 851-865, 2008.
[14]C. Blawert, N. Hort and K. U. Kainer, "Automotive applications of magnesium and its alloys," Trans. Indian Inst. Met, vol. 57, pp. 397-408, 2014
[15] A. Luo, J. Renaud, I. Nakatsugawa and J. Plourde, "Magnesium castings for automotive applications, "JOM Journal of the Minerals, Metals and Materials Society, vol. 47, pp. 28-31, 1995.
[16] G. L. Song, and A. Atrens, "Corrosion mechanisms of magnesium alloys," Advanced engineering materials, vol. 1, pp, 11-33, 1999
[17]G. Song, and D. StJohn, "The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ," Journal of Light Metals, vol. 2, 2002.
[18]K. Nisancioglu, O. Lunder and T. Aune, "Corrosion mechanism of AZ91 magnesium alloy," Past to Future: 47 th Annual World Magnesium Conference, pp. 43-55, 1990.
[19]O. Lunder, K. Nisancioglu and R. S. Hansen, "Corrosion of die cast magnesium-aluminum alloys," SAE Technical Paper, 1993.
[20]A. A. Luo, "Recent magnesium alloy development for automotive powertrain applications," Materials Science Forum, vol. 419, pp. 57-66, 2003.
[21]G. Wu, Y. Fan, H. Gao, C. Zhai and Y. P. Zhu, "The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D," Materials Science and Engineering, vol. 408, pp. 255-263, 2005.
[22]B. L. Mordike and T. Ebert, "Magnesium: Properties — applications — potential," Materials Science and Engineering: A, vol. 302, pp. 37-45, 2001.
[23]L. P. Wu, J. J. Zhao, Y. P. Xie and Z. D. Yang, "Progress of electroplating and electroless plating on magnesium alloy," Transactions of Nonferrous Metals Society of China, vol. 20, pp. 630-637, 2010.
[24]C. Gu, J. Lian, J. He, Z. Jiang and Q. Jiang, "High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy," Surface and Coatings Technology, vol. 200, pp. 5413-5418, 2010.
[25]Y. Zhang, C. Yan, F. Wang, H. Lou and C. Cao, "Study on the environmentally friendly anodizing of AZ91D magnesium alloy," Surface and Coatings Technology, vol. 161, pp. 36-43, 2002.
[26]H. F. Guo and M. Z. An, "Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance," Applied Surface Science, vol. 246, pp. 229-238, 2005.
[27]C. Gu, J. Lian, J. He, Z. Jiang and Q. Jiang, "High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy," Surface and Coatings Technology, vol. 200, pp. 5413-5418, 2006.
[28]G. L. Song and Z. Shi, "Corrosion mechanism and evaluation of anodized magnesium alloys," Corrosion Science, vol. 85, pp. 126-140, 2014.
[29]A. T. Kuhn, "Plasma anodized aluminum—A 2000/2000 ceramic coating," Metal Finishing, vol. 100 (issues 11-12), pp. 44-50, 2002.
[30]王駿宏, "富含SiO2與與脫硫渣改質物之CaCO3/Ca3(SiO4)O漿料噴覆於鎂合金表面以提升其抗腐蝕能力與耐熱性質之研究", 碩士, 材料科學與工程學系所, 中興大學, 台中市, 2015.
[31]H. Hassan, Elsentriecy, K. Azumi and H. Konno, “Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique,” Electrochimica Acta, vol. 53, pp. 1006-1012, 2007.
[32]W. Jin and K. Yan, "Recent advances in electrochemical detection of toxic Cr (VI)," RSC Advances 5, vol. 47, pp. 37440-37450, 2015.
[33]M. S. Chandrasekar and M. Pushpavanam, "Pulse and pulse reverse plating—Conceptual, advantages and applications," Electrochimica Acta, vol. 53, pp. 3313-3322, 2008.
[34]L. Dong, H. Zhang, T. Fujita, S. Ohnishi, H. Li and M. Fujii, "Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki's experience and practice in Liuzhou and Jinan," Journal of Cleaner Production, vol. 59, pp. 226-238, 2013.
[35]K. Yabuta, H. Tozawa and T. Takahashi, "New applications of iron and steelmaking slag contributing to a recycling-oriented Society," JFE technical report, vol. 10, pp. 17-23, 2006.
[36]G. Wranglén, "Review article on the influence of sulphide inclusions on the corrodibility of Fe and steel," Corrosion Science, vol. 9, pp. 585-602, 1969.
[37]D. A. Melford, "The Influence of Residual and Trace Elements on Hot Shortness and High Temperature Embrittlement," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, pp. 89-103, 1980.
[38]Y. L. Chen, J. E. Chang, P. H. Shih, M. S. Ko, Y. K. Chang, and L. C. Chiang, "Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture," Journal of Environmental Management, vol. 91, pp. 1892-1897, 2010.
[39]M. I. Domínguez, F. Romero-Sarria, M. A. Centeno, and J. A. Odriozola, "Physicochemical characterization and use of wastes from stainless steel mill," Environmental Progress & Sustainable Energy, vol. 29, pp. 471-480, 2010.
[40]C. R. Loper Jr, J. O. Kristiansen, A. L. Haase, R. H. Bigge, and F. Quilling, "Beneficial reuse of desulfurization slag, "Transactions of the American Foundrymen's Society, vol. 104, pp. 29-32, 1996.
[41]A. Bonazza, L. Cunico, G. Dircetti, M. Dondi, G. Guarini, and A. Ruffini, "Recycling steel slag in the brick industry," Ind. Laterizi, vol. 12, pp. 170-182, 2001.
[42]B. Chen and J. Liu, "Effect of fibers on expansion of concrete with a large amount of high f-CaO fly ash," Cement and Concrete Research, vol. 33, pp. 1549-1552, 2003.
[43]M. Nicolae, I. Vîlciu, and F. Zǎman, "X-ray diffraction analysis of steel slag and blast furnace slag viewing their use for road construction," UPB Sci. Bull, vol. 69, pp. 99-108, 2007.
[44]M. Svanera, S. Panza, F. Uberto, and R. Roberti, "An innovative system for the re-use of slag from the Electric Arc Furnace," Metallurgia Italiana, pp. 37-43, 2012.
[45]T. Yan, L. Tan, D. Xiong, X. Liu, B. Zhang, and K. Yang, "Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy," Materials Science and Engineering: C, vol. 30, pp. 740-748, 2010.
[46]K. Y. Chiu, M. H. Wong, F. T. Cheng, and H. C. Man, "Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants," Surface and Coatings Technology, vol. 202, pp. 590-598, 2007.
[47]F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt and T. Donath, "In vivo corrosion and corrosion protection of magnesium alloy LAE442," Acta Biomaterialia, vol. 6, pp. 1792-1799, 2010.
[48]H. L. Guo, J. L. Xie, and K. Dan, "Experimental Investigation of Mixing Desulfurization Residues and Cement," Advanced Materials Research, vol. 113, pp. 1976-1980, 2010.
[49]Y. Long, L. Yue, G. Li, Y. Lei, and S. Wang, "The Basic Study on the Prepartion of Steel Slag Cement with Gas Quenching Steel Slag," The Open Materials Science Journal, vol. 5, pp. 72-77, 2011.
[50]"Standard Practice for Operating Salt Spray (Fog) Apparatus," ASTM B117, 1994.
[51]G. Song, A. Atrens, D. St John, X. Wu and J. Nairn, "The anodic dissolution of magnesium in chloride and sulphate solutions," Corrosion Science, vol. 39, pp. 10-11, 1997.
[52]G. Song, "Recent progress in corrosion and protection of magnesium alloys," Advanced Engineering Materials, vol. 7, pp. 563-586, 2005.
[53]P. M. Bradford, B. Case, G. Dearnaley, J. F. Turner and I. S. Woolsey, "Ion beam analysis of corrosion films on a high magnesium alloy (Magnox Al 80)," Corrosion Science, vol. 16, pp. 747-766, 1976.
[54]N. Birbilis, B. N. Padgett and R. G.Buchheit, "Limitations in microelectrochemical capillary cell testing and transformation of electrochemical transients for acquisition of microcell impedance data," Electrochimica Acta, vol. 50, pp. 3536-3544, 2005.
[55]X. L. Zhang, Z. H. Jiang, Z. P. Yao, Y. Song, and Z. D. Wu, "Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density," Corrosion Science, vol. 51, pp. 581-587, 2009.
[56]H. B. Yao, Y. Li and A. T. S. Wee, "An XPS investigation of the oxidation/corrosion of melt-spun Mg," Applied Surface Science, vol. 158, pp. 112-119, 2000.
[57]C. Liu, Y. Xin, X. Tian and P. K. Chu, "Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids," Thin Solid Films, vol. 516, pp. 422-427, 2007.
[58]L. Wang, T. Shinohara and B. P. Zhang, "XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution," Applied Surface Science, vol. 256, pp. 5807-5812, 2010.
[59]A. Hozumi, O. Takai, Thin Solid Films, vol. 203, pp. 222–225, 1997.
[60]M. Lotfi, M. Nejib, and M. Naceur,"Cell adhesion to biomaterials: concept of biocompatibility." Advances in Biomaterials Science and Biomedical Applications. InTech, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊