跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志健
研究生(外文):Chang, Chih-Chien
論文名稱:一種應用於全差動連續近似式類比數位轉換器之混合訊號式校正方法
論文名稱(外文):A Mixed-Signal Calibration Scheme for the Fully Differential Successive Approximation Analog-to-Digital Converter
指導教授:洪浩喬
指導教授(外文):Hong, Hao-Chiao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:125
中文關鍵詞:校正混合訊號連續近似類比數位轉換器
外文關鍵詞:calibrationmixed-signalsuccessive approximationanalog-to-digital converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1055
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
SAR ADC的解析度主要受限於製程製作出的電容比例是否準確。本論文提出一種適用於全差動SAR ADC的混和訊號式校正方式。對於一個由已知比例關係之方式所構成的待校電容陣列,我們可以使用此演算法去找出該陣列中各個電容因製程變異而產生的誤差量,並將之數位化後儲存。然後,在SAR ADC進行轉換的同時補償每次DAC轉換所產生的誤差,如此便可提升該SAR ADC的解析度。
本論文提出之校正方式,不論電容因製程的非理想性導致其值比標準值高或低,都有辦法做到誤差計算與補償,並且使比較器的設計難度降低,有效的提升了SA ADC的有效位元數。
模擬結果顯示,靜態參數的表現上校正前INL=-11/+11LSB,校正後INL=-0.9/+0.9LSB,動態參數的表現上,校正前SNDR=51.7dB,ENOB=8.3bits,校正後peak SNDR=71.6dB,ENOB=11.6bits,可大幅改善因電容不匹配所造成的非線性。實作晶片量測結果顯示,未啟動校正機制時,當取樣頻率為10M S/s時,peak SNDR=53.3dB,ENOB=8.6bits,而校正後之peak SNDR=53.3dB,ENOB=8.6bits。雖然電路實現的量測結果顯示此校正法有未臻完美之處,但若我們能校正segmented架構中main DAC與sub DAC間的匹配度,將會使此演算法的可應用範圍大大提升。

It is the mismatched capacitors due to process variation that limit the resolution of a conventional capacitive SAR ADC. To address this issue, this thesis proposes a mixed-signal calibration scheme for the fully differential SAR ADC. The proposed calibration scheme first estimates the ratio errors of the capacitors under calibration in the binary weighted capacitor array. Then, the errors will be digitized and stored. When the SAR ADC operates in the normal conversion, the calibration scheme will compensate the errors caused by the DAC in an analog way. The calibration scheme proposed in this thesis is able to calibrate the ratio errors of the capacitors, no matter the ratio error is positive or negative. With the proposed calibration scheme, the effective number of bits of the SAR ADC can be enhanced.
Simulation results show that the INL values are improved from -11~+11 LSB to -0.9~+0.9 LSB after calibration, and the SNDR and ENOB values are enhanced from 51.7dB and 8.3bits to 71.6dB and 11.6bits after calibration. The results show that the ADC’s performance can be significantly improved with the proposed calibration scheme.
We implemented a 12-bit 1.8V SAR ADC with the proposed calibration scheme in TSMC 0.18µm 1P6M CMOS process. Measurement results show that the SAR ADC achieves SNDR of 53.3dB and ENOB of 8.6 bits at 10 MS/s before calibration. The ADC consumes 5.94mW at 1.8-V.
The measurement results show this calibration method can be improved. The main issue is the mismatch between the main DAC and the sub DAC in the segmented structure. It is our future work to address this issue.

摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 SA ADC介紹 2
1.3 傳統單端輸入之SA ADC 4
1.4 改良型單端輸入之SA ADC 5
1.5 雙端輸入之SA ADC(一) 6
1.6 雙端輸入之SA ADC(二) 8
1.7 研究動機與目的 10
1.8 論文章節組織及研究方法 11
第二章 具有自我校正功能之SA ADC介紹 13
2.1 應用於SA ADC之由高至低式校正演算法 13
2.2 應用於SA ADC之由低至高式校正演算法 21
2.3 應用於SA ADC之全數位式校正演算法 26
2.4 應用於SA ADC之LMS式校正演算法 34
2.5 結論 35
第三章 提出之應用於全差動SA ADC的校正演算法 37
3.1 整體電路架構 37
3.2 所提出之全差動連續近似開關切換方法 38
3.3 SA ADC裡的誤差來源 45
3.4 加入校正演算法的電路動作流程與假設 46
3.5 所提出之誤差估測模式 49
3.5.1計算待校電容陣列中MSB電容誤差之方法 50
3.5.2計算待校電容陣列中MSB-1電容誤差之方法 55
3.6 所提出之具有誤差補償的正常轉換模式 60
3.7 偏移量對此校正演算法的影響 61
3.8 以電路之行為模型驗證所提出之演算法 61
3.8.1範例一:當MSB電容為正向誤差且MSB-1電容為負向誤差 62
3.8.2範例二:當MSB電容為負向誤差且MSB-1電容為正向誤差 65
3.8.3範例三:最大可校正之常態分布的亂數誤差於所有DAC 68
3.9 與先前所提出之校正方法相比較 72
第四章 具校正功能之12位元SA ADC設計 74
4.1 提出之SA ADC架構 74
4.2 取樣開關(Sampling switches) 74
4.3 具有偏移量補償功能的比較器級 79
4.3.1 前置放大器(Pre-Amplifier) 82
4.3.2 Regenerative latch 83
4.4 數位類比轉換器(Digital to Analog Converter) 84
4.4.1 加入校正用的電容與寄生電容之影響 89
4.5 提出之SA ADC數位電路設計 92
4.6 ADC佈局圖 94
4.7 電路模擬與驗證 96
4.8 Hardware Overhead 101
第五章 量測結果與性能分析 103
5.1 量測環境設定與晶片照 103
5.2 未執行校正功能時的測量結果 105
5.3 執行校正功能的測量結果 110
5.4 ADC之測量結果分析 112
第六章 結論與未來發展 120
6.1 結論 120
6.2 未來發展與待改進之處 120
參考文獻 122
[1.] David A. Johns and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997.
[2.] A. S. Sedra and K. C. Smith, “Microelectronic Circuits,” 4th. Ed., Oxford University Press, 1998.
[3.] H. C. Hong and G. M. Lee, “A 65fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, October 2007.
[4.] Sauerbrey J., Schmitt-Landsiedel D., and Thewes R., “A 0.5-V 1-?巰 successive approximation ADC,” IEEE J. Solid-State Circuits 38(7), pp. 1261- 1265, 2003.
[5.] H. C. Hong and G. M. Lee, “Design of An Ultra-low Power Successive Approximation Analog-to-Digital Converter for Wireless Sensor Networks,” VLSI CAD, August 2006.
[6.] Jianhua Gan, Shouli Yan, and Jacob Abraham, “Effects of Noise and Nonlinearity on the Calibration of a Non-Binary Capacitor Array in a Successive Approximation Analog-to-Digital Converter,” IEEE, 2004.
[7.] X. Jiang, Z. Wang, and M. F. Chang, “A 2GS/s 6b ADC in 0.18?慆 CMOS,” IEEE Int. Solid-State Circuits Conf., pp. 322-323, Feb. 2003.
[8.] Hester, R. R., et al. “Fully differential ADC with rail-to-rail common-mode range and nonlinear capacitor compensation,” IEEE J. Solid-State Circuits, 25(1), pp. 173-183.
[9.] Shan-Li Long, Jian-Hui Wu, and Xiao-Juan Xia, “A 1.8-V 3.1mW successive approximation ADC in system-on-chip,” Analog Integrate Circuit Process, 56, pp. 205-211, 2008.
[10.] D. Aksin, M. Al-Shyoukh, and F. Maloberti, “Switch bootstrapping for precise sampling beyond supply voltage,” IEEE J. Solid-State Circuits, vol. 41, no. 8, Aug. 2006.
[11.] Y. Matsuya and J. Yamada, “1 V power supply, low-power consumption A/D conversion technique with swing-suppression noise shaping,” IEEE J. Solid-State Circuits, vol. 29, no. 12, December 1994.
[12.] H. C. Hong and T. Y. Hsieh, “A 1.76?巰, 0.9V, 8-bit Successive Approximation Register ADC with Fully-Differential Input Capability,” VLSI CAD, August 2007.
[13.] Gilbert Promitzer, “12-bit Low-Power Fully Differential Switched Capacitor Non-calibrating Successive Approximation ADC with 1MS/s,” IEEE J. Solid-State Circuits, vol. 36, no. 7, July 2001.
[14.] H. P. Le, J. Singh, L. Hiremath, V. Mallapur, and A. Stojcevski, “Ultra-low-power variable-resolution successive approximation ADC for biomedical application,” Electronics Letters 26th., vol. 41, no. 11, May 2005.
[15.] Hae-Seung Lee and David A. Houges, “Self-Calibration Technique for A/D Converters,” IEEE Transactions on Circuits and Systems, vol. CAS-30, no. 3, March 1983.
[16.] Hae-Seung Lee, David A. Houges, and Paul R. Gray, “A Self-Calibrating 15 Bit CMOS A/D Converter,” IEEE J. Solid-State Circuits, vol. SC-19, no. 6, December 1984.
[17.] Hae-Seung Lee and David A. Houges, “Accuracy Considerations in Self-Calibrating A/D Converters,” IEEE Transactions on Circuits and Systems, vol. CAS-32, no. 6, June 1985.
[18.] Behzad Razavi, “Design of Integrated Circuits for Optical Communications,”
[19.] K.S Tan, “On Board Self-Calibration of Analog-to-Digital and Digital-to-Analog Converters,” Unite States Patent, no. 4399426, August 1983.
[20.] K.S Tan, S. Kiriaki, M.D. Wit, J.W. Fattaruso, C.Y. Tsay, W.E. Matthews, and R.K. Hester, “Error Correction Techniques for High-Performance Differential A/D Converters,” IEEE J. Solid-State Circuits, vol. 25, no. 6, December 1990.
[21.] Harald Neubauer, Thomas Desel, and Hans Hauer, “A Successive Approximation A/D Converter with 16bit 200kS/s in 0.6?慆 CMOS using Self-Calibration and Low Power Techniques,” Proc. 8th. IEEE Int. Conf. Electronics Circuits and Systems, pp. 859–862, September 2001.
[22.] Gerald, Miller, Michael Timko, Hae-Seung Lee, Eric Nestler, Michael Mueck, and Paul Ferguson, “An 18b 10?酨 Self-Calibrating ADC,” IEEE Int. Solid-State Circuits Conf., February 1990.
[23.] R. J. Guo, “Design of a 12-bit, Ultra-low Power Successive Approximation Analog-to-Digital Converter,” Taiwan, National Chiao-Tung University, Department of Electrical and Control Engineering, January 2008.
[24.] N. Verma and A. P. Chandrakasan, “A 25?巰 100kS/s 12b ADC for wireless micro-sensor applications,” IEEE Int. Solid-State Circuits Conf., pp. 822–831, 2006.
[25.] F. Kuttner, “A 1.2V 10bit 20MSample/s non-binary successive approximation ADC in 0.13?慆 CMOS,” IEEE Int. Solid-State Circuits Conf., pp. 136–137, 2002.
[26.] L. H. de Carvalho Ferreira and T. C. Pimenta, “An ultra low-voltage CMOS OTA Miller with rail-to-rail operation,” Proceedings of the 16th. International Conference on Microelectronics, pp. 223-226, December 2004.
[27.] B. J. Blalock, P. E. Allen, and G. A. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology,” IEEE Transactions on Circuits and Systems, vol. 45, no. 7, July 1998.
[28.] A. L. Coban and P. E. Allen, “A 1.75V rail-to-rail CMOS op amp,” IEEE Int. Solid-State Circuits Conf., pp. 497-500, 1994.
[29.] R. Hogervorst, R. J. Wiegerink, P. A.L de Jong, J. Fonderie, R. F. Wassenaar, and J. H. Huijsing, “CMOS low-voltage operational amplifiers with constant-gm rail-to-rail input stage,” IEEE International Symposium on Circuits and Systems, vol. 6, pp. 2876-2879, May 1992.
[30.] Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design,” New York Oxford, Second Edition, 2002.
[31.] T. Y. Tsai, “Low Power Techniques for Digital IC Design,” CIC eNEWS, vol 86, 15th., December 2007.
[32.] Reference to: “http://members.tripod.com/~x_zhou/MSM2000/sld011.htm”
[33.] Vito Gianninil, Pierluigi Nuzzo, Vincenzo Chironi, Andrea Baschirottol, Geert Van der Plas, and Jan Craninckx, “An 820?巰 9b 40MS/s Noise-Tolerant Dynamic-SARADC in 90nm Digital CMOS,” IEEE Int. Solid-State Circuits Conf., 2008.
[34.] S. Y. Chin and C. Y. Wu, “A CMOS ratio-independent and gain-insensitive algorithmic analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 31, no. 8, August 1996.
[35.] J. A. M. Jarvinen, M. Saukoski, and K. Halonen, “A 12-bit 32?巰 Ratio- Independent Algorithmic ADC,” Symposium on VLSI Circuits Digest, 2006.
[36.] C. S. Lin and B. D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 54–62, January 2003.
[37.] K. Hadidi, V. S. Tso, and G. C. Temes, “An 8-b 1.3-MHz successive approximation A/D converter,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 880-885, June 1990.
[38.] E. Culurciello and A. Andreou, “An 8-bit, 1mW successive approximation ADC in SOI CMOS,” Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 301-304, June 2003.
[39.] A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electronics letters, vol. 32, no. 12, June 1996.
[40.] M. Waltari and K. A. I. Halonen, “1-V 9-Bit Pipelined Switched-Opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, January 2001.
[41.] 蘇朝琴, “具通信功能之車用功率系統晶片,” 國科會專題研究計畫 (NSC-98-2220-E-009-035), Jul., 2009.
[42.] 洪浩喬, “車用電源線通訊系統之類比前端積體電路設計,” 國科會專題研究計畫 (NSC-98-2220-E-009-036), Jul., 2009.
[43.] C.-C. Liu, S.-J. Chang, G.-Y. Huang and Y.-Z. Lin, “A 0.92mW 10-bits 50-MS/s SAR ADC in 0.13µm CMOS Process,” IEEE Symp. on VLSI Circuits Dig. Tech. Papers, pp 236-237, Jun. 2009.
[44.] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang and Ying-Zu Lin , “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, April 2010.
[45.] T. Y. Hsieh, “A Digital Calibration Scheme for the Successive Approximation Analog-to-Digital Converter,” Taiwan, National Chiao-Tung University, Department of Electrical and Control Engineering, March 2009.
[46.] W. Liu, P. Huang, Y. Chiu, “A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC Achieving Over 90dB SFDR,” ISSCC Dig. Tech. Papers, pp. 380-381, Feb. 2010.
[47.] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid- State Circuits, Vol. 39, No. 7, pp. 1148-1158, July 2004
[48.] Yanfei Chen, Xiaolei Zhu, Tamura H., Kibune M., Tomita Y., Hamada T., Yoshioka M., Ishikawa K., Takayama T., Ogawa J., Tsukamoto S., Kuroda T., “Split capacitor DAC mismatch calibration in successive approximation ADC ,” Custom Integrated Circuits Conference, 2009. CICC '09. IEEE, pp. 279, Sept 2009

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊