跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/16 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾雲龍
研究生(外文):Yun-Long Tseng
論文名稱:艾黴素微脂粒劑型應用於癌症標的治療之探討
論文名稱(外文):Targeted Cancer Therapy with Liposomal Doxorubicin
指導教授:張富雄
指導教授(外文):Fu-Hsiung Chang, Ph. D.
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:115
中文關鍵詞:艾黴素微脂粒癌症標的治療抗體聚乙烯乙二醇免疫微脂粒
外文關鍵詞:doxorubicinliposometargeted cancer therapyantibodypolyethyleneglycolimmunoliposome
相關次數:
  • 被引用被引用:3
  • 點閱點閱:820
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微脂粒表面以聚乙烯乙二醇(PEG)等聚合物修飾,可以增進微脂粒藥物在動力學上的優勢,使藥物在血液中的循環時間大幅度增長,以便增高藥物在腫瘤部位的累積量,達到提高治療率的效果。然而,使用穩定的微脂粒組成,即利用distearoylphosphatidylcholine (DSPC) / 膽固醇 (Chol) 構成脂雙層膜,製造較緊密的中性小微脂粒包裹抗癌藥物doxorubicin時,即使沒有PEG修飾,也可以在血液中長時間循環。因此,利用PEG修飾增高藥物在血液中的AUC (area under the time-concentration curve) 的效果,在 3% PEG-DSPE 時,AUC 僅增加一倍,即使增高到 6% 的PEG-DSPE,也不能再有效增高 AUC。可是出現 PEG 在微脂粒表面卻阻礙微脂粒進入腫瘤組織,因而減低藥物在腫瘤的累積量,注射藥物七十二小時後的腫瘤內藥物 AUC,沒有 PEG 的Doxorubicin微脂粒劑型 (NPLD) 是有 6% PEG 的Doxorubicin微脂粒劑型 (PLD) 的1.44 倍。NPLD在腫瘤的累積效率 Te ( Te=AUC Tumor/AUC Plasma)是0.87而 PLD 只有 0.31。此外,進行抑制腫瘤生長、增長存活時間及降低副作用等性質比較時,PLD 和 NPLD 均優於 free doxorubicin; PLD 和 NPLD 相互比較時,雖然 NPLD 略優於 PLD,但沒有統計上的差異。總之,於穩定的微脂粒系統,Pegylation 於小鼠C-26腫瘤模型僅有增加血中AUC的效果,並沒有因為循環時間增長而增加治療指數及降低副作用。
Pegylated 微脂粒有較小組織分配量和較長血中循環時間的特性,利用上述性質與抗體的專一標的能力結合,將有助於癌症的標的性治療。我們利用對淋巴癌細胞 (38C13) 上的 idiotype 抗原有特異辨識能力的 S5A8單株抗體 (MAb),共價結合到微脂粒表面的長鏈 linker 製造免疫微脂粒。用一種對 pH 靈敏的螢光的染料(HPTS),可以發現 S5A8 免疫微脂粒不但可以與標的細胞 38C13 特異結合,還可以經由細胞吞噬作用將藥物送入細胞內。此外,以S5A8 免疫微脂粒包裹 doxorubicin (S5A8-Lipo-Dox) 處理細胞24小時後,測量 doxorubicin 的攝取量,發現有抗原的38C13細胞是沒有抗原表達的變異細胞(V1-1)的五倍。因此,在測量免疫微脂粒的藥物細胞毒性時,發現S5A8-Lipo-Dox 具有選擇性的細胞毒殺能力。進行藥物動力學試驗時,S5A8-Lipo-Dox 的血中半衰期僅比 PLD 略短,仍具有長效型微脂粒的功能。利用C3H小鼠的淋巴瘤模式進行治療效果試驗,証明 S5A8-Lipo-Dox 的療效優於 PLD 及 free doxorubicin。我們的結果顯示利用與本研究類似的微脂粒系統進行標的性腫瘤療法,可以提高傳統抗癌藥物的療效,值得更進一步的研究發展。
Steric stabilization by polyethylene glycol (PEG) can reduce opsonization of the liposome by plasma proteins. It has a higher plasma area under the concentration-time curve (AUC), which is believed to correlate with better therapeutic efficacy. However, the presence of large molecules on the liposomal surface may reduce interactions of liposomes with cells and hinder the entry of liposomes into the tumor tissue. Using a stable liposomal system composed of distearoyl phosphatidylcholine (DSPC)/cholesterol, we examined the effect of PEG (mol. wt.: 2000) on the pharmacokinetics and on the efficacy of liposomal doxorubicin with C-26 syngeneic tumor model in the BALB/c mice. The plasma AUC of liposomal doxorubicin with 6 mol % PEG-modified distearoylphosphatidylethanolamine (PEG-DSPE) was about twice that of liposomal doxorubicin without PEG at various dosages, regardless of tumor bearing or not. Paradoxically, the tumor concentration of liposomal doxorubicin without PEG was higher. The 72-hour tumor AUC was 1.44 times that of liposomal doxorubicin with 6% PEG-DSPE. The tumor-accumulation efficiency (Te=AUCTumor/AUCPlasma) of liposomal doxorubicin without PEG was 0.87 and this was more than twice that of the liposomal doxorubicin with 6% PEG-DSPE (0.31). At the dose of 10 mg/kg, although both liposomal groups were better than free drug group in terms of clinic-relevant parameters, including toxicity, tumor shrinkage, and survival, there was no difference between two liposomal drug groups. In this stable liposome system, surface coating with PEG (PEGylation) offered no benefit for liposomal doxorubicin in the C-26 tumor model. To enhance the therapeutic index of liposomal doxorubicin, just increasing plasma AUC by PEGylation may not be satisfactory.
Pegylated liposomes results in smaller distribution volume and longer circulation time in blood and thus may improve drug targeting. The characteristics and therapeutic efficacy of immunoliposomes with similar liposomal formulation have never been studied in lymphoma models. We have developed immunoliposomes conjugated with S5A8 monoclonal antibody (MAb), an anti-idiotype antibody to 38C13 murine B-cell lymphoma, and loaded them with doxorubicin using an ammonium sulfate gradient. Purified antibodies were covalently coupled to the termini of PEG on the surface of small unilamellar liposomes. Cell binding and internalization ability of these immunoliposomes was estimated by a fluorescence assay using a pH-sensitive fluorescent dye (HPTS). In vitro cytotoxicity of doxorubicin encapsulated in immunoliposomes was greater for idiotype-positive 38C13 cells than that for idiotype-negative variant (V1-1) of this cell line. In syngeneic C3H/HeN mice, doxorubicin encapsulated in immunoliposomes exhibited long circulation time and was more effective in prolonging survival of mice bearing 38C13 tumor than non-targeted liposomal doxorubicin or free doxorubicin plus empty immunoliposomes. Our results demonstrate the superiority of targeted therapy with these immunoliposomes, and may have potential in cancer treatment.
目 錄
頁次
中文摘要---------------------1
英文摘要---------------------3
縮 寫---------------------5
一、 緒 論
第一節:微脂粒之簡介---------------------8
第二節:微脂粒在藥物傳輸的應用 --------------15
第三節:長效型微脂粒的發展 --------------19
第四節:研究背景與動機---------------------24
二、實驗材料與方法---------------------27
三、結果------------------------------50
四、討論------------------------------63
五、結論------------------------------69
六、參考文獻------------------------------71
七、圖表------------------------------83
八、附錄------------------------------110
1. Bangham AD, Standish MM, Watkins JC: Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology 13:238, 1965
2. Bangham AD, Horne RW: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology 8:660, 1964
3. Sessa G, Weissmann G: Phospholipid spherules (liposomes) as a model for biological membranes. Journal of Lipid Research 9:310, 1968
4. Allen TM, Cleland LG: Serum-induced leakage of liposome contents. Biochimica et Biophysica Acta 597:418, 1980
5. Senior JH: Fate and behavior of liposomes in vivo: a review of controlling factors. [Review] [444 refs]. Critical Reviews in Therapeutic Drug Carrier Systems 3:123, 1987
6. Lasic DD: Liposomes: from physics to application. Elseiver, New York 1993
7. Grit M, Crommelin DJ: Chemical stability of liposomes: implications for their physical stability. [Review] [56 refs]. Chemistry & Physics of Lipids 64:3, 1993
8. Grit M, Underberg WJ, Crommelin DJ: Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome dispersions. Journal of Pharmaceutical Sciences 82:362, 1993
9. Grit M, Zuidam NJ, Underberg WJ, Crommelin DJ: Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and the effect of cholesterol incorporation on hydrolysis kinetics. Journal of Pharmacy & Pharmacology 45:490, 1993
10. Gregoriadis G, Ryman BE: Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochemical Journal 124:58P, 1971
11. Rahman A, Kessler A, More N, Sikic B, Rowden G, Woolley P, Schein, PS: Liposomal protection of adriamycin-induced cardiotoxicity in mice. Cancer Research 40:1532, 1980
12. Kanter PM, Bullard GA, Ginsberg RA, Pilkiewicz FG, Mayer LD, Cullis, PR, Pavelic ZP: Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo 7:17, 1993
13. Boman NL, Mayer LD, Cullis PR: Optimization of the retention properties of vincristine in liposomal systems. Biochimica et Biophysica Acta 1152:253, 1993
14. Alkan-Onyuksel H, Ramakrishnan S, Chai HB, Pezzuto JM: A mixed micellar formulation suitable for the parenteral administration of taxol. Pharmaceutical Research 11:206, 1994
15. Lopez-Berestein G: Liposomes as carriers of antimicrobial agents. [Review] [43 refs]. Antimicrobial Agents & Chemotherapy 31:675, 1987
16. Mok KW, Cullis PR: Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophysical Journal 73:2534, 1997
17. Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D: Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimica et Biophysica Acta 557:9, 1979
18. Szoka F, Olson F, Heath T, Vail W, Mayhew E, Papahadjopoulos D: Preparation of unilamellar liposomes of intermediate size (0.1-0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochimica et Biophysica Acta 601:559, 1980
19. Panosian CB, Barza M, Szoka F, Wyler DJ: Treatment of experimental cutaneous leishmaniasis with liposome-intercalated amphotericin B. Antimicrobial Agents & Chemotherapy 25:655, 1984
20. Scherphof G, Roerdink F, Waite M, Parks J: Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochimica et Biophysica Acta 542:296, 1978
21. Scherphof G, Van Leeuwen B, Wilschut J, Damen J: Exchange of phosphatidylcholine between small unilamellar liposomes and human plasma high-density lipoprotein involves exclusively the phospholipid in the outer monolayer of the liposomal membrane. Biochimica et Biophysica Acta 732:595, 1983
22. Allen TM: A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochimica et Biophysica Acta 640:385, 1981
23. Ostro MJ, Cullis PR: Use of liposomes as injectable-drug delivery systems. [Review] [90 refs]. American Journal of Hospital Pharmacy 46:1576, 1989
24. Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z: Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 42:4734, 1982
25. Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, Ben-Dor CG, Rabello E, Cass Y, Peretz T: Clinical studies of liposome-encapsulated doxorubicin. Acta Oncologica 33:779, 1994
26. Rahman A, Fumagalli A, Barbieri B, Schein PS, Casazza AM: Antitumor and toxicity evaluation of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Chemother.Pharmacol. 16:22, 1986
27. Rahman A, Treat J, Roh JK, Potkul LA, Alvord WG, Forst D, Woolley, PV: A phase I clinical trial and pharmacokinetic evaluation of liposome-encapsulated doxorubicin. J Clin Oncol. 8:1093, 1990
28. Gulati M, Bajad S, Singh S, Ferdous AJ, Singh M: Development of liposomal amphotericin B formulation. [Review] [85 refs]. Journal of Microencapsulation 15:137, 1998
29. Lopez-Berestein G: Liposomes as carriers of antimicrobial agents. [Review] [43 refs]. Antimicrobial Agents & Chemotherapy 31:675, 1987
30. Wright AE, Douglas SR, Sanderson JB: An experimental investigation of the role of the blood fluids in connection with phagocytosis. 1903 [classical article]. Reviews of Infectious Diseases 11:827, 1989
31. Gregoriadis G, Senior J: The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Letters 119:43, 1980
32. Blume G, Cevc G: Liposomes for the sustained drug release in vivo. Biochimica et Biophysica Acta 1029:91, 1990
33. Nichols JW, Deamer DW: Catecholamine uptake and concentration by liposomes maintaining p/ gradients. Biochimica et Biophysica Acta 455:269, 1976
34. Haran G, Cohen R, Bar LK, Barenholz Y: Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases [published erratum appears in Biochim Biophys Acta 1994 Feb 23;1190(1):197]. Biochim.Biophys.Acta 1151:201, 1993
35. Lasic DD, Ceh B, Stuart MC, Guo L, Frederik PM, Barenholz Y: Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim.Biophys.Acta 1239:145, 1995
36. Lasic DD, Frederik PM, Stuart MC, Barenholz Y, McIntosh TJ: Gelation of liposome interior. A novel method for drug encapsulation. FEBS Lett. 312:255, 1992
37. Park JW, Hong K, Carter P, Asgari H, Guo LY, Keller GA, Wirth C, Shalaby R, Kotts C, Wood WI: Development of anti-p185HER2 immunoliposomes for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America 92:1327, 1995
38. Kirpotin D, Park JW, Hong K, Zalipsky S, Li WL, Carter P, Benz CC, Papahadjopoulos D: Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66, 1997
39. Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ: Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Letters 386:243, 1996
40. Allen TM: Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223:42, 1987
41. Chonn A, Semple SC, Cullis PR: Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. Journal of Biological Chemistry 267:18759, 1992
42. Chonn A, Semple SC, Cullis PR: Beta 2 glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of "non-self" particles. Journal of Biological Chemistry 270:25845, 1995
43. Allen TM: Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys.Acta. 981:27, 1989
44. Papahadjopoulos D, Gabizon A: Targeting of liposomes to tumor cells in vivo. [Review] [75 refs]. Annals of the New York Academy of Sciences 507:64, 1987
45. Gabizon A, Papahadjopoulos D: Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proceedings of the National Academy of Sciences of the United States of America 85:6949, 1988
46. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A: Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochimica et Biophysica Acta 1066:29, 1991
47. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain, RK: Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Research 55:3752, 1995
48. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Research 54:3352, 1994
49. Gabizon A, Goren D, Cohen R, Barenholz Y: Development of liposomal anthracyclines: from basics to clinical applications. J Controlled Release 53:275, 1998
50. Al-Sarraf M: Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol 15:277, 1997
51. Parr MJ: Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J Pharmacol Exp Ther 280:1319, 1997
52. Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD: Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. British Journal of Cancer 72:896, 1995
53. Ahmad I: Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 53:1484, 1993
54. Allen TM: Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 15:215, 1994
55. Bartlett GR: Phosphorus assay in column chromatography. Journal of Biological Chemistry 234:466, 1959
56. Sedlak J, Lindsay RH: Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman''s reagent. Analytical Biochemistry 25:192, 1968
57. Szoka FJ, Papahadjopoulos D: Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences of the United States of America 75:4194, 1978
58. Martin FJ, Papahadjopoulos D: Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. Journal of Biological Chemistry 257:286, 1982
59. Matthay KK, Abai AM, Cobb S, Hong K, Papahadjopoulos D, Straubinger, RM: Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Research 49:4879, 1989
60. Yoshimura T, Shono M, Imai K, Hong K: Kinetic analysis of endocytosis and intracellular fate of liposomes in single macrophages. Journal of Biochemistry 117:34, 1995
61. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang, SK, Lee KD, Woodle MC, Lasic DD, Redemann C: Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America 88:11460, 1991
62. Schmitz S, Allen TM, Jimbow K: Polyethylene-glycol-mediated delivery of liposome-entrapped pigments into fibroblasts: experimental pigment cells as models for mutator phenotypes. Cancer Research 52:6638, 1992
63. Gabizon A, Chemla M, Tzemach D, Horowitz AT, Goren D: Liposome longevity and stability in circulation: effects on the in vivo delivery to tumors and therapeutic efficacy of encapsulated anthracyclines. Journal of Drug Targeting 3:391, 1996
64. Siegal T, Horowitz A, Gabizon A: Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg. 83:1029, 1995
65. Allen TM: Long-circulating (sterically stabilized) liposomes for targeted drug delivery. [Review] [40 refs]. Trends Pharmacol.Sci. 15:215, 1994
66. Forssen EA, Male-Brune R, Adler-Moore JP, Lee MJ, Schmidt PG, Krasieva TB, Shimizu S, Tromberg BJ: Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Research 56:2066, 1996
67. Bally MB, Nayar R, Masin D, Hope MJ, Cullis PR, Mayer LD: Liposomes with entrapped doxorubicin exhibit extended blood residence times. Biochimica et Biophysica Acta 1023:133, 1990
68. Parr MJ, Bally MB, Cullis PR: The presence of GM1 in liposomes with entrapped doxorubicin does not prevent RES blockade. Biochimica et Biophysica Acta 1168:249, 1993
69. Daemen T, Hofstede G, ten Kate MT, Bakker-Woudenberg IA, Scherphof GL: Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer 61:716, 1995
70. Parr MJ, Masin D, Cullis PR, Bally MB: Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J Pharmacol.Exp.Ther 280:1319, 1997
71. Cullis PR, Hope MJ, Bally MB, Madden TD, Mayer LD, Fenske DB: Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. [Review] [123 refs]. Biochimica et Biophysica Acta 1331:187, 1997
72. Wu NZ, Da D, Rudoll TL, Needham D, Whorton AR, Dewhirst MW: Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Research 53:3765, 1993
73. Edwards K, Johnsson M, Karlsson G, Silvander M: Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophysical Journal 73:258, 1997
74. Needham D, McIntosh TJ, Lasic DD: Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta 1108:40, 1992
75. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM: Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. American Journal of Pathology 133:95, 1988
76. Yuan F: Transvascular drug delivery in solid tumors. [Review] [126 refs]. Seminars in Radiation Oncology 8:164, 1998
77. Parr MJ, Masin D, Cullis PR, Bally MB: Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). Journal of Pharmacology & Experimental Therapeutics 280:1319, 1997
78. Park JW: Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc nat. Acad. Sci.:1327, 1995
79. Kirpotin D: Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer in vitro. Biochemistry 36:66, 1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top