|
1. DRAM price fell below cash cost; Through Silicon VIA solution for stacking multiple NAND flash dies;Introduction of new Intel CPU platform help DRAM transition to new standards. DRAMeXchange Tech.Inc., All rights reserved 2. T. Yoshinaga, Trends in R&D in TSV Technology for 3D LSI Packaging, Science & Technology Trends., 37, 26-39 (2010). 3. 劉建惟, 三維積體電路直通矽穿孔技術之應用趨勢與製程簡介, Nano Communication., 20, 20-27. 4. T. P. Moffat, D. Josell, Extreme Bottom-Up Superfilling of Through-Silicon-Vias by Damascene Processing: Suppressor Disruption, Positive Feedback and Turing Patterns, J. Electrochem. Soc., 159, 20-216 (2012). 5. T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, Via-filling using electroplating for build-up PCBs, Electrochem. Acta., 47, 85-89 (2001). 6. M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, T. Osaka, All-wet fabrication process for ULSI interconnect technologies, Electrochem. Acta., 51, 916-920 (2005). 7. M. Yoshino, T. Masuda, T. Yokoshim, J. Sasano, Y. Shacham-Diamand, I. Matsud, T. Osaka, Y. Hagiwara, I. Sato Electroless Diffusion Barrier Process Using SAM on Low-k Dielectrics, J. Electrochem. Soc., 154, 122–125 (2007). 8. T. Osaka, H. Aramaki, M. Yoshino, K. Ueno, I. Matsuda, Y. Shacham-Diamand, Fabrication of Electroless CoWP/NiB Diffusion Barrier Layer on SiO2 for ULSI Devices, J. Electrochem. Soc., 156, 707-710 (2009) 9. A. Kumar, M. Kumar, D. Kumar, Effect of composition on electroless deposited Ni–Co–P alloy thin films as a diffusion barrier for copper metallization, Appl. Surf. Sci., 258 7962-7967 (2012). 10. C. H. Lee, S. C. Lee, J. J. Kim Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS), Electrochem. Acta., 50, 3563-3568 (2005 ). 11. Z. Yang, N. Li, X. Wang, Z. Wang, Z. Wang, Bottom-Up Filling in Electroless Plating with an Addition of PEG–PPG Triblock Copolymers, Electrochem. Solid-State Lett., 13, 47-49 (2010). 12. F. Inoue, Y. Harad, M. Koyanagi, T. Fukushima, K. Yamamoto, S. Tanaka, Z. Wang, S. Shingubara Perfect Conformal Deposition of Electroless Cu for High Aspect Ratio Through-Si Vias, Electrochem. Solid-State Lett., 12, 281-384 (2009). 13. H. Miyake, F. Inoue, T. Yokoyama, T. Shimizu, S. Tanaka1, T. Terui1, S. Shingubara, Formation and Evaluation of Electroless-Plated Barrier Films for High-Aspect-Ratio Through-Si Vias, Jpn. J. Appl. Phys., 50, (2011). 14. F. Inoue, T. Shimizu, T. Yokoyama, H. Miyake, K. Kondo, T. Saito, T. Hayashib, S. Tanaka, T. Terui, S. Shingubara, Formation of electroless barrier and seed layers in a high aspect ratio through-Si vias using Au nanoparticle catalyst for all-wet Cu filling technology, Electrochim. Acta., 56, 6245-6250 (2011) 15. L. C. Yang, C. S. Hsu, G. S. Chen, C. C. Fu, J. M. Zuo, B. Q. Lee, Strengthening TiN diffusion barriers for Cu metallization by lightly doping Al, Appl. Phys. Lett., 87, 121911 (2005). 16. A. L. S. Loke, S. S. Wong, N. A. Talwalkar, J. T. Wetzel, P. H. Townsend, T. Tanabe, R. N. Vrtis, M. P. Zussman, and D. Kumar, Evaluation of copper penetration in low-k polymer dielectrics by bias-temperature stress, 1999 MRS Spring Meeting, Symposium N/O, Paper 04.4 Preprint, San Francisco, CA, April 7, (1999). 17. G. Raghavan, C. Chiang, P. B. Anders, S. M. Tzeng, R. Villasol, G. Bai, M. Bohr, and D. B. Fraser, Diffusion of copper through dielectric films under bias temperature stress, Thin Solid Films, 262, 168-176 (1995). 18. M. A. Nicolet, Diffusion barrier in thin films, Thin Solid Films, 52, 415-443, (1978) 19. H.Y. Wong, N.F. Mohd Shukor, N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., 38, 777-782 (2007). 20. G. S. Chen and S. T. Chen, Diffusion barrier properties of single and multilayered quasi-amorphous tantalum nitride thin films against copper penetration, J. App. Phys., 87, 8473-8482 (2000). 21. M. 1. Wang, Y. C. tin, M. C. Chen, Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion, J Electrochem. Soc., 145, 2538-2545 (1998). 22. S. P. Murarka, Multilevel interconnections for ULSI and GSI era, Mater. Sci. Eng., 19, 87-151 (1997). 23. X. W. Lin and D. Pramanik, Future interconnect technologies and copper metallization, Solid State Technol., 41, 63-79 (1998). 24. P. Bindra, J. Tweedie, Mechanisms of Electroless Metal Plating, J. Electrochem. Soc.,130. 1112 (1983). 25. S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang S. J. Lin, Integrated electrochemical deposition of copper metallization for ultralarge-scale integrated circuits, J. Electrochem. Soc., 151, C81 (2004). 26. C. H. Lee, J. J. Kim, Effects of Pd activation on the self annealing of electroless copper deposition using Co(II)-ethylenediamine as a reducing agent, J. Vac. Sci. Technol. B., 23, p. 475 (2005). 27. V.M. Dubin Y.Shacham-Diaman, B. Zhao, P. K. Vasudev, C. H. Ting, Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration, J.Electrochem. Soc., 144, 898-908 (1997) 28. K Weiss , S Riedel, S.E Schulz, M Schwerd, H Helneder, H Wendt, T Gessner, Development of different copper seed layers with respect to the copper electroplating process, Microelectron. Eng., 50, 433-440 (2000). 29. D. Prashar, Self Assembled Monolayers -A Review, Int.J. ChemTech Res., 4, 258-265 (2012) 30. T. Osaka, N.Takano, T. Kurokawa, T. Kaneko, K. Uenoc, Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology, J. Electrochem. Soc., 149, 573-578 (2002). 31. T. Osaka, N. Takano, T. Kurokawa, K. Ueno, Fabrication of Electroless NiReP Barrier Layer on SiO2 Without Sputtered Seed Layer, Electrochem. Solid-State Lett., 5, 7-10 (2002). 32.T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM, Electrochim. Acta, 54, 6053 (2009). 33. S. T. Chen, G. S. Chen, C. H. Huang, A vacuum plasma surface pretreatment for refining seeding of Co in electroless copper plating, Thin Solid Films., 518, 4261-4265 (2010). 34. C.S. Hsu, S.T. Chen, Y.S. Tang, G.S. Chen, Strengthening electroless Co-based barrier layers by minor refractory-metal doping, Thin Solid Films, 517, 1274-1278 (2008) 35. G. S. Chen, Y. S. Tang, S. T. Chen, T. J. Yang, Electroless deposition of ultrathin Co-B based barriers for Cu metallization using an innovative seeding technique, Electrochem. Solid-State Lett., 9, 141 (2006). 36. G.S. Chen, S.T. Chen, Characterization of Ultrathin Electroless Barriers Grown by Self-Aligned Deposition on Silicon-Based Dielectric Films, J. Electrochem. Soc., 151, 99-105, (2004) 37. S. T. Chen, G. S. Chen, T. J. Yang, T. C. Chang, W. H. Yang, The Synergistic Effect of N2 ÕH2 Gases in the Plasma Passivation of Siloxane-Based Low-k Polymer Films, Electrochem. Solid-State Lett., 6, 4-7 (2003) 38. S. T. Chen, G. S. Chen, Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization, Langmuir, 27, 12143 (2011). 39. T. Komeda, K. Namba, and Y. Nishioka, Self-assembled-monolayer film islands as a self-patterned-mask for SiO2 thickness measurement with atomic force microscopy, Appl. Phys. 70, 3398 (1997) 40. G. S. Chen, S. T. Chen, Y. W. Chen, Y. C. Hsu, Site-selective electroless metallization on porous organosilica films by multisurface modification of alkyl monolayer and vacuum plasma, Langmuir, 29, 511 (2013) 41. A. Inberg, E. Glickman, T. Asher, N. Fishelson, Y. Shacham-Diamand Electrical properties of sub-100 nm Cu films deposited by electroless plating on amino-terminated silicon oxide activated with Au nano-particles, Surf. Coat. Technol., 204, 520–524 (2009) 42. T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation and characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM, Electrochim. Acta., 54, 6053–6057 (2009). 43. D. Aldakov, Y. Bonnassieux, B. Geffroy, S. Palacin, Selective Electroless Copper Deposition on Self-Assembled Dithiol Monolayers, ACS Appl. Mater. Interfaces., 1, 584-589, (2009) 44. S. T. Chen, G. S. Chen, Characterization of ultrathin electroless barriers grown by self-aligned deposition on silicon-based dielectric films, J. Electrochem. Soc., 151, 99 (2004). 45. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, The Physics and chemistry of SiO2 and the Si-SiO2 interface, C. R. Helms and B. E. Deal, Editors, p. 219, Plenum Press, New York (1988). 46. V. Jousseaume, N. Rochat, L. Favennec, O. Renault G. Passemard, Mechanical stress in PECVD a-SiC:H: aging and plasma treatments effects, Mater. Sci. Semicond. Proc., 7, 301 (2004). 47. Z. Xiaolin, K. Raoul, Mechanism of Organosilane Self-Assembled Monolayer Formation on Silica Studied by Second-Harmonic Generation, J. Phys. Chem., 100, 11014-11018 (1996) 48. Kr. A. Persson, B. Waldwick, P. Lazic, G. Ceder, Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states, Physicle Review B, 85, 235438 (2012). 49. N. M.Martyak, P. Ricou, Seed layer corrosion of Damascene structures in copper sulfate electrolytes, Materials Science in Semiconductor Processing, 6, 225-233 (2003) 50. A. Wang, H. Tang, T. Cao, S. O. Salley,K. Y. Simon Ng, In vitro stability study of organosilane self-assemble monolayers and multilayers, J. Colloid Interface Sci, 291, 438-447 (2005). 51. E. Metwalli, D. Haines, O. Becker, S. Conzone, C.G. Pantano, Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates, J. Colloid Interface Sci., 298, 825-831 (2006) 52. F. Zhang, M. P. Srinivasan. Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities, Langmuir. 20, 2309–2314 (2004). 53. G. Jaksa, B. Stefane and J. Kovac, XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer, Surf. Interface Anal, 45, 1709-1713 (2013). 54. Z. Zhao, Y. He, H. Yang, X. Qu, X. Lu, J. Luo, Aminosilanization Nanoadhesive Layer for Nanoelectric Circuits with Porous Ultralow Dielectric Film, Appl. Mater. Interfaces, 5, 6097-6107 (2013) 55. F. Zhang, M. P. Srinivasan, Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities, Langmuir. 20, 2309-2314 (2004) 56. A. V. Krasnoslobodtsev, S. N. Smirnov, Effect of Water on Silanization of Silica by Trimethoxysilanes, Langmuir. 18, 3181-3184 (2002) 57. A. K. Chauhan, D. K. Aswal, S. P. Koiry, S. K. Gupta, J. V. Yakhmi, C. Surgers, D. Guerin, S. Lenfant, D. Vuillaume, Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics, Appl. Phys. 90, 581-589 (2008) 58. J. Duchet, B. Chabert, J. P. Chapel, J. F. Ge´rard, J. M Chovelon, N. Jaffrezic-Renault, Influence of the Deposition Process on the Structure of Grafted Alkylsilane Layers, Langmuir. 13, 2271-2278 (1997) 59. R. M. Pasternack, S. Rivillon Amy, Y. J. Chabal, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature, Langmuir. 24, 12963-12971 (2008) 60. T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation and characterization of low resistivity sub-100nm copper films deposited by electroless on SAM, Electrochim. Acta., 54, 1, 6053-6057 (2009). 61. 陳松德,博士論文,逢甲大學材料科學與工程學系,民國93 62. F. Inoue, T. Shimizu, H. Miyake, R. Arima, T. Ito, H. Seki, Y. Shinozaki, T. Yamamoto, S. Shingubara,, Highly adhesive electroless barrier/Cu-seed formation for high aspect ratio through-Si vias, Microelectron. Eng., 106, 164-167 (2013) 63. V. Morton and R. D. Fisher, Effect of Electroless Nickel Substrate on Coercive Force and Microstructure of Certain Co-P Films, J. Electrochem. Soc., 116, 188-190 (1969).
|