跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥州
研究生(外文):Yen-Chou Lin
論文名稱:適用於未知非線性多輸入多輸出系統之適應性PID容錯控制器
論文名稱(外文):Adaptive PID Fault Tolerant Controllers for Unknown Nonlinear MIMO Systems
指導教授:蔡聖鴻
指導教授(外文):Jason S. H. Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:67
中文關鍵詞:類神經網路線性規劃進化演算法最速下降法PID
外文關鍵詞:steepest descent methodevolutionary programmingneural networkPIDlinear programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出分別以進化演算法結合最速下降法以及線性規劃結合最速下降法為基礎之兩種用於未知非線性多輸入多輸出系統之適應性多變數PID容錯控制器。對於具有單調非線性的非線性系統,一個使用延伸型卡爾曼濾波器來調整權值的類神經網路被用來線上估測最精確的等價系統模型,之後使用最速下降法找出一個最佳控制,進化演算法或線性規劃則用來線上調整PID容錯控制器。
Based on the evolutionary programming (EP) combined with the steepest descent method and the linear programming (LP) combined with the steepest descent method respectively, two adaptive multivariable PID fault tolerant controller schemes for the unknown nonlinear multi-input multi-output (MIMO) systems are proposed in this thesis. In the case of nonlinear dynamic system, and for monotonic nonlinearity, a neural network adapted with the extended Kalman filter is created to estimate the most accurate equivalent system model online, then the EP or LP is used for on-line tuning the well-performed PID fault tolerant controller after using the steepest descent method to find an optimal control.
Chinese Abstract I
Abstract II
Acknowledgements III
List of Contents IV
List of Tables VI
List of Figures VII

Content
Chapter 1 Introduction 1-1
Chapter 2 EP-Based Adaptive PID Fault Tolerant Controllers for Unknown Nonlinear MIMO Systems 2-1
2.1 Introduction 2-2
2.2 Adaptive Neural Network Model 2-3
2.2.1 Neural Network Model 2-3
2.2.2 Neural Network Identification 2-4
2.2.3 Extended Kalman Filter Algorithm 2-7
2.3 Evolutionary Programming 2-9
2.3.1 Quasi-random Sequences (QRS) 2-10
2.4 EP-Based Adaptive Algorithm for PID Fault Tolerant Controllers 2-15
2.4.1 Control Structure and Convergence Analysis with Steepest Descent Method 2-16
2.4.2 Gains Tuning for PID Controller with EP 2-18
2.5 An Illustrative Example 2-23
Chapter 3 LP-based Adaptive PID Fault Tolerant Controllers for Unknown Nonlinear MIMO Systems 3-1
3.1 Linear Programming 3-2
3.2 Gains Tuning for PID Controller with Linear Programming 3-3
3.3 An Illustrative Examples 3-4
Chapter 4 Conclusion 4-1
Reference R-1
[1] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schrder. Diagnosis and Fault-Tolerant Control. Germany, Berlin: Springer-Verlag, 2004.
[2] R. J. Patton, P. M. Frank and R. Clark. Fault Diagnosis in Dynamic Systems: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[3] B. M. Badreddine and F. Lin, “Adaptive PID controller for stable/unstable linear and non-linear systems,” Proceedings of the 2001 IEEE International Conference on Control Applications, pp.1031. 5-7, Sept. 2001
[4] S. Chand, “on-line, self-monitoring tuner for proportional integral derivative controllers,” Proceedings of the 30th IEEE Conference on Decision and Control, vol.2, pp.1905–1916, 11-13 Dec. 1991.
[5] J. Litt, “An expert system to perform on-line controller tuning,” IEEE Control Systems Magazine, vol.11, issue 3, pp.18-23, April 1991.
[6] K Takao, T. Yamamoto and T. Hinamoto, “Memory-based on-line tuning of PID controllers for nonlinear systems,” Proceedings of the 2004 American Control Conference, vol. 5, pp. 4016-4021, 30 June-2 July, 2004.
[7] Y. Ding, “A nonlinear PID controller based on fuzzy-tuned immune feedback law,” Proceedings of the 3rd World Congress on Intelligent Control and Automation, vol. 3, pp.1576-1580, 28 June-2 July 2000.
[8] V. Kecman, Learning and Soft Computing. Cambridge, Massachusetts: MIT Press, 2001.
[9] S. Haykin. Neural Networks. Second Edition. New Jersey: Prentice-Hall, 1999.
[10] O. Nelles. Nonlinear System Identification. Germany, Berlin: Springer-Verlag, 2000.
[11] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Trans. on Neural Networks, vol. 1, no.1, pp. 4-27, 1990.
[12] K. S. Narendra, and A. M. Annaswamy. Stable adaptive systems. Engelwood Cliffs, NJ: Prentice Hall, 1989.
[13] S. Haykin. Kalman Filtering and Neural Networks. Wiley-Interscience, 2001.
[14] D. L. Yu, T. K. Chang and D. W. Yu, “Fault tolerant control of multivariable processes using auto-tuning PID controller,” IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 35, issue 1, pp. 32-43, Feb. 2005.
[15] Y. Iiguni, H. Sakai and H. Tokumaru, “A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter,” IEEE Trans. on Signal Processing, vol. 40, issue 4 pp. 959-966, 1992.
[16] L. Ljung and T. Sderstrm, Theory and Practice of Recursive Identification. Cambridge, MA: MIT Press, 1983.
[17]Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Germany, Berlin: Springer-Verlag, 1996.
[18] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84-90 with Corrigenda on p. 196, 1960.
[19] J. C. Van Der Corput, “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amsterdam, vol. 38, pp. A13-A21, pp. 1058-1066, 1935.
[20] T. Rommel, Neural networks based adaptive control, Report no. 97-30, The University of Auckland, New Zealand, Diploma Thesis, 1997.
[21] V. Kecman and T. Rommel, Performance of neural networks based adaptive backthrough control, Proc. ICONIPANZIIS/ANNES, Dunedin, New Zealand, 1997.
[22] W. D. Chang, R.C. Hwang, and J.G. Hsieh, “A multivariable on-line adaptive PID controller using auto-tuning neurons,” Engineering Applications of Artificial Intelligence, vol. 16, pp. 57-63, 2003.
[23] R. Salman, “Neural networks of adaptive inverse control systems,” Applied Mathematics and Computation 163 pp. 931–939, 2005.
[24] G. G. Yen and L. W. Ho, “Online multiple-model-based fault diagnosis and accommodation,” IEEE Trans. on Industrial Electronics, vol. 50, issue 2, pp. 296-312, 2003.
[25] G. B. Dantzig, M. N, Thapa. Linear Programming 1: Introduction. Germany, Berlin: Springer-Verlag, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 適用在非線性奇異資料取樣系統之以進化演算法為基底的開迴路反覆學習控制其閉迴路追蹤器
2. 適用於多變數殊異擾動系統的線性二次納許賽局追蹤器:數位再設計法則
3. 適用於大尺度系統之分散式自適應控制的數位再設計
4. 多重離散式及分散式時延類比中性系統之最佳/次最佳數位追蹤器設計
5. 基於卡爾曼觀測器的錯誤偵測與性能恢復
6. 一個新的數位再設計錯誤容忍追蹤器在線性多輸入多輸出取樣資料系統的應用
7. 適用於客製化自駕車之以路徑追蹤為導向的模擬器
8. 針對高度非線性系統的系統辨識與伺服控制之見解
9. 具有最優化PID濾波之長輸入時延線性系統的精確數位重新設計追蹤器
10. 基於PID與滑模控制之具有直接傳輸項的非線性系統追蹤器和擾動估測器設計:HTRDNA演算法的追蹤器最佳化
11. 適用於未知資料採樣奇異系統的一種基於改良型函數觀測器之等效輸入干擾估測器
12. 新型線上觀測器/控制器鑑別法與其應用於未知微非線性系統之輸入限制控制及主動式容錯控制
13. 適用於有著未知干擾的非極小相位彈性臂系統之強健數位追蹤器設計:一種基於觀測/卡爾曼濾波器的方法
14. 基於觀測器/卡爾曼濾波器鑑別法與模型預測控制法的線上容錯控制
15. 適用於大尺度系統之分散式軌跡追蹤器:反覆學習與數位重新設計方法