[1] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, 183-191.
[2] S. G. Kim, S. S. Lee, E. Lee, J. Yoon, H. S. Lee, Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity, RSC Adv., 2015, 5, 102567-102573.
[3] H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, G. Yang, Transparent conductive reduced graphene oxide thin films produced by spray coating, Sci. China-Phys. Mech. Astron., 2014, 58, 1-5.
[4] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Mater. Today, 2012, 15, 86-97.
[5] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 2010, 22, 3906-3924.
[6] D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite, Sens. Actuators B, 2016, 225, 233-240.
[7] B. Qiu, Q. Li, B. Shen, M. Xing, J. Zhang, Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage, Appl. Cat. B: Environ., 2016, 183, 216-223.
[8]Y. Zheng, D. Lee, H. Y. Koo, S. Maeng, Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing, Carbon, 2015, 81, 54-62.
[9]C. H. Lin, K. T. Chen, J. R. Ho, J. W. J. Cheng, R. C. C. Tsiang, PEDOT:PSS/graphene nanocomposite hole-injection layer in polymer light-emitting diodes, J. Nanotechnol., 2012, 2012, 1-7.
[10] T. J. Fan, C. Q. Yuan, W. Tang, S. Z. Tong, Y. D. Liu, W. Huang, Y. G. Min, A. J. Epstein, A novel method of fabricating flexible transparent conductive large area graphene film, Chin. Phys. Lett., 2015, 32, 076802.
[11] L. Wang, T. Wu, S. Du, M. Pei, W. Guo, S. Wei, High performance supercapacitors based on ternary graphene/Au/polyaniline (PANI) hierarchical nanocomposites, RSC Adv., 2016, 6, 1004-1011.
[12] H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology, 2010, 21, 505204.
[13] D. S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, 23, 1482-1513.
[14] M. Cai, D. Thorpe, D. H. Adamson, H. C. Schniepp, Methods of graphite exfoliation, J. Mater. Chem., 2012, 22, 24992.
[15] J. Pu, L. Tang, C. Li, T. Li, L. Ling, K. Zhang, Q. Li, Y. Yao, Chemical vapor deposition growth of few-layer graphene for transparent conductive films, RSC Adv., 2015, 5, 44142-44148.
[16] W. H. Lee, J. Park, S. H. Sim, S. Lim, K. S. Kim, B. H. Hong, K. Cho, Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors, J. Am. Chem. Soc., 2011, 133, 4447-4454.
[17] M. Choucair, P. Thordarson, J. A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nat. Nanotechnol., 2009, 4, 30-33.
[18] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, Graphene oxide: the mechanisms of oxidation and exfoliation, J. Mater. Sci., 2012, 47, 4400-4409.
[19] 劉博滔, 郭翰霖, 石墨烯複合透明導電膜之研究, 技術學刊, 2014, 29, 173-179.
[20] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
[21] W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, Q. H. Yang., Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage, ACS Nano, 2009, 3, 3730-3736.
[22] H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater., 2011, 23, 1089-1115.
[23] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon, 2012, 50, 3210-3228.
[24] T. Szabo, O. Berkesi, P. Forgo´, K. Josepovits, Y. Sanakis, D. Petridis, I. De´ka´ny, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 2006, 18, 2740-2749.
[25] C. Hontoria-Lucas, A. J. López-Peinado, J. de D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, 1995, 33, 1585-1592.
[26] H. K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M. H. Park, K. H. An, I .J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, J. Am. Chem. Soc., 2008, 130, 1362-1366.
[27] H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, M. Ren, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Adv. Colloid Interface Sci., 2013, 195-196, 19-40.
[28] X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, H. Zhang, In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces, J. Phys. Chem. C, 2009, 113, 10842-10846.
[29] Q. Lin, Y. Li, M. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature, Sens. Actuators B, 2012, 173, 139-147.
[30] S. Jayabal, P. Viswanathan, R. Ramaraj, Reduced graphene oxide–gold nanorod composite material stabilized in silicate sol–gel matrix for nitric oxide sensor, RSC Adv., 2014, 4, 33541.
[31] H. M. A. Hassan, V. Abdelsayed, A. E. R. S. Khder, K. M. AbouZeid, J. Terner, M. S. El-Shall, S. I. Al-Resayes, A. A. El-Azhary, Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem., 2009, 19, 3832.
[32] S. Iijima, Helical microtubules of graphitic carbon, Lett. Nat., 1991, 354, 56-58.
[33] 曾士豪, 邱建超, 戴念華, 奈米碳管之製程技術簡介, 真空科技, 2006, 19, 17-25.
[34] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 2010, 35, 357-401.
[35] S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 2013, 5, 1727-1752.
[36] J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T. A. Kowalewski, Z. Szymanski, L. Stobinski, Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength, Phys. Status Solidi B, 2015, 252, 1860-1867.
[37] P. Kanninen, N. D. Luong, H. Sinh le, I. V. Anoshkin, A. Tsapenko, J. Seppala, A. G. Nasibulin, T. Kallio, Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films, Nanotechnology, 2016, 27, 235403.
[38] M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells, Org. Electron., 2015, 21, 86-91.
[39] S. Das, R. N. P. Vemuri, T. L. Alford, Enhanced conductivity of Y-doped ZnO thin films by incorporation of multiple walled carbon nanotubes, Thin Solid Films, 2013, 527, 92-95.
[40] S. Yellampalli, Carbon nanotubes - polymer nanocomposites, InTech, 2011.
[41] V. Thirumal, A. Pandurangan, R. Jayavel, S. R. Krishnamoorthi, R. Ilangovan, Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications, Curr. Appl. Phys., 2016, 16, 816-825.
[42] T. Somanathan, N. Gokulakrishnan, P. Arumugam, Low temperature growth of double walled carbonnanotubes using FeMoMgO catalyst, J. Nanosci. Nanotechnol., 2013, 13, 1-5.
[43] 蘇俊銘, 聚二氧乙基噻吩/聚苯乙烯磺酸(PEDOT:PSS)之製備與其含無電鍍銀微粒之導電膠的導電度研究, 臺灣大學高分子科學與工程學研究所碩士論文, 2012.[44] 翁郁婷, 潘孝安, 吳乃立, 導電高分子於超高電容器之應用, 化工, 2013, 60, 73.
[45] Y. Cong, S. Liu, H. Chen, Fabrication of conductive polypyrrole nanofibers by electrospinning, J. Nanomater., 2013, 2013, 1-6.
[46] T. S. Kang, S. W. Lee, J. Joo, J. Y. Lee, Electrically conducting polypyrrole fibers spun by electrospinning, Syn. Met., 2005, 153, 61-64.
[47] R. Liu, Z. Liu, Polythiophene: Synthesis in aqueous medium and controllable morphology, Sci. Bull., 2009, 54, 2028-2032.
[48] J. Huang, J. A. Moore, J. H. Acquaye, R. B. Kaner, Mechanochemical route to the conducting polymer polyaniline, Macromolecules, 2005, 38, 2581-2590.
[49] A. G. MacDiarmi, Synthetic Metals: A novel role for organic polymers (Nobel lecture), Angew. Chem. Int. Edi., 2001, 40, 2581-2590.
[50] G. W. Huang, H. M. Xiao, H. Q. Shi, S. Y. Fu, Controllable synthesis of novel sandwiched polyaniline/ZnO/polyaniline free-standing nanocomposite films, J. Polym. Sci. Part A: Polym. Chem., 2012, 50, 2794-2801.
[51] I. Y. Jeon, L. S. Tan, J. B. Baek, Synthesis and electrical properties of polyaniline/polyaniline grafted multiwalled carbon nanotube mixture viain situstatic interfacial polymerization, J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 1962-1972.
[52] G. W. Huang, H. M. Xiao, S. Y. Fu, Novel vertical spinning preparation of free-standing carbon nanotube–polyaniline composite films with high electrical conductivity, J. Mater. Chem. C, 2014, 2, 2758.
[53] J. Liu, J. Sun, L. Gao, A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films, J. Phys. Chem. C, 2010, 114, 19614-19620.
[54] N. A. Kumar, H. J. Choi, Y. R. Shin, D. W. Chang, L. Di, J. B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors, ACS Nano, 2012, 6, 1715-1723.
[55] P. Phumman, S. Niamlang, A. Sirivat, Fabrication of poly(p-phenylene)/zeolite composites and their responses towards ammonia, Sensors (Basel), 2009, 9, 8031-8046.
[56] M. Gerard, A. Chaubey, B. D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron., 2002, 17, 345-359.
[57] S. van Reenen, M. Scheepers, K. van de Ruit, D. Bollen, M. Kemerink, Explaining the effects of processing on the electrical properties of PEDOT:PSS, Org. Electron., 2014, 15, 3710-3714.
[58] J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, N. S. Sariciftci, Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives, Thin Solid Films, 2013, 536, 211-215.
[59] U. Lang, E. Müller, N. Naujoks, J. Dual, Microscopical Investigations of PEDOT:PSS Thin Films, Adv. Funct. Mater., 2009, 19, 1215-1220.
[60] P. K. Choudhury, D. Bagchi, C. S. S. Sangeeth, R. Menon, Modified conformation and physical properties in conducting polymers due to varying conjugation and solvent interactions, J. Mater. Chem., 2011, 21, 1607-1614.
[61] D. Yoo, J. Kim, J. H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems, Nano Res., 2014, 7, 717-730.
[62] E. Kymakis, G. Klapsis, E. Koudoumas, E. Stratakis, N. Kornilios, N. Vidakis, Y. Franghiadakis, Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics, Eur. Phys. J. Appl. Phys., 2007, 36, 257-259.
[63] Z. Zhao, G. F. Richardson, Q. Meng, S. Zhu, H. C. Kuan, J. Ma, PEDOT-based composites as electrode materials for supercapacitors, Nanotechnology, 2016, 27, 042001.
[64] Z. Lan, S. Gao, J. Wu, J. Lin, High-performing dye-sensitized solar cells based on reduced graphene oxide/PEDOT-PSS counter electrodes with sulfuric acid post-treatment, J. Appl. Polym. Sci., 2015, 132, 42648(42641-42645).
[65] S. K. M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. Denier van der Gon, W. R. Salaneck, M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films, Syn. Met., 2003, 139, 1-10.
[66] S. Timpanaro, M. Kemerink, F. J. Touwslager, M. M. De Kok, S. Schrader, Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy, Chem. Phys. Lett., 2004, 394, 339-343.
[67] F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, L. Leenders, PEDOT/PSS: synthesis, characterization, properties and applications, Syn. Met., 2003, 135-136, 115-117.
[68] X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. Denier van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, W. R. Salaneck, Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study, Polym. Phys., 2003, 41, 2561-2583.
[69] T. H. Meen, K. L. Chen, Y. H. Chen, W. R. Chen, D. W. Chou, W. H. Lan, C. J. Huang, The effects of dilute dulfuric acid on sheet resistance and transmittance in Poly(3,4-thylenedioxythiophene): Poly(styrenesulfonate) films, Inter. J. Photoenergy, 2013, 2013, 1-6.
[70] J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Syn. Met., 2002, 126, 311-316.
[71] L. A. A. Pettersson, S. Ghosh, O. Ingan, Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate), Org. Electron., 2002, 3, 143-148.
[72] Y. Xia, K. Sun, J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater., 2012, 24, 2436-2440.
[73] J. K. Chang, M. T. Lee, W. T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J. Power Sources, 2007, 166, 590-594.
[74] D. Kalpana, K. S. Omkumar, S. S. Kumar, N. G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor, Electrochim. Acta, 2006, 52, 1309-1315.
[75] 袁磊, 王朝陽, 副志兵, 張厚琼, 唐永健, 超級電容器電極材料的研究進展, 材料導報:綜述篇, 2010, 24, 11-14.
[76] M. S. Halper, J. C. Ellenbogen, Supercapacitors: A brief overview, MITRE Nanosystems Group, 2006.
[77] J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, Phys. Chem. Chem. Phys., 2011, 13, 15384-15402.
[78] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7, 845-854.
[79] Q. Yang, S. K. Pang, K. C. Yung, Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution, J. Electroanalyt. Chem., 2014, 728, 140-147.
[80] Y. Liu, B. Weng, J. M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G. G. Wallace, J. Chen, High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films, Sci. Rep., 2015, 5, 17045.
[81] Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li, F. Kang, Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices, J. Mater. Chem. A, 2013, 1, 12432.
[82] Y. Hou, Y. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Lett., 2010, 10, 2727-2733.
[83] C. Peng, S. Zhang, D. Jewell, G. Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors, Prog. Nat. Sci., 2008, 18, 777-788.
[84] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, J. Mater. Chem. A, 2014, 2, 10776.
[85] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources, 2006, 153, 413-418.
[86] Y. Han, B. Ding, H. Tong, X. Zhang, Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites, J. Appl. Polym. Sci., 2011, 121, 892-898.
[87] F. Alvi, M. K. Ram, P. A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor, Electrochim. Acta, 2011, 56, 9406-9412.
[88] L. Chen, C. Yuan, H. Dou, B. Gao, S. Chen, X. Zhang, Synthesis and electrochemical capacitance of core–shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites, Electrochim. Acta, 2009, 54, 2335-2341.
[89] S. S. Karade, B. R. Sankapal, Room temperature PEDOT:PSS encapsulated MWCNTs thin film for electrochemical supercapacitor, J. Electroanalyt. Chem., 2016, 771, 80-86.
[90] J. W. Kim, B. G. Choi, All-solid state flexible supercapacitors based on graphene/polymer composites, Mater. Chem. Phys., 2015, 159, 114-118.
[91] Y. T. Lai, N. H. Tai, One-step process for high-performance, adhesive, flexible transparent conductive films based on p-type reduced graphene oxides and silver nanowires, ACS Appl. Mater. Interfaces, 2015, 7, 18553-18559.
[92] J. E. McCarthy, C. A. Hanley, L. J. Brennan, V. G. Lambertini, Y. K. Gun'ko, Fabrication of highly transparent and conducting PEDOT:PSS films using a formic acid treatment, J. Mater. Chem. C, 2014, 2, 764-770.
[93] 黃桂武, 軟性印製透明導電高分子材料技術發展, 光連雙月刊, 2012, 102, 58-65.
[94] B. J. Kim, S. H. Han, J. S. Park, Properties of CNTs coated by PEDOT:PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes, Surf. Coat. Technol., 2015, 271, 22-26.
[95] S. Kim, A. Cho, S. Kim, W. Cho, M. H. Chung, F. S. Kim, J. H. Kim, Multi-purpose overcoating layers based on PVA/silane hybrid composites for highly transparent, flexible, and durable AgNW/PEDOT:PSS films, RSC Adv., 2016, 6, 19280-19287.
[96] T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, W. Huang, High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors, J. Mater. Chem. A, 2016, 4, 10493-10499.
[97] J. Heinze, Cyclic voltammetry-Electrochemical Spectroscopy, Angew. Chem. Int. Edi., 1984, 23, 831-918.
[98] X. Li, A. R. Barron, Introduction to cyclic voltammetry measurements, OpenStax CNX, 2010.
[99] J. W. Park, W. Na, J. Jang, Hierarchical core/shell Janus-type α-Fe2O3/PEDOT nanoparticles for high performance flexible energy storage devices, J. Mater. Chem. A, 2016, 4, 8263-8271.
[100] 游文雄, 鋰離子電池混合金屬氧化物材料之電化學特性分析, 國立中央大學化學工程與材料工程學系碩士論文, 2000.[101] 簡志瑋, 硫化物對三價鉻電鍍行為的影響, 國立臺灣大學材料科學與工程學系碩士論文, 2010.[102] 陳盈助, 電解液配方對鋰離子電池性能之研究, 國立成功大學化學工程學系碩士論文, 2002.[103] S. William, Hummers JR, E. O. Richard, Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, 80, 1339-1339.
[104] F. Li, K. Cai, S. Shen, S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films, Syn. Met., 2014, 197, 58-61.
[105] 吳奕諼, 碲化鉍合金熱電薄膜發電器之設計與製造, 國立台灣科技大學機械工程學系碩士論文, 1999.[106] 洪文進, 許登貴, 萬明安, 郭書瑋, 蘇昭瑾, ITO 透明導電薄膜:從發展與應用到製備與分析, 化學, 1995, 63, 409-418.
[107] S. K. Kim, T. Liu, X. Wang, Flexible, highly durable, and thermally stable SWCNT/Polyimide transparent electrodes, ACS Appl. Mater. Interfaces, 2015, 7, 20865-20874.
[108] D. N. H. Tran, S. Kabiri, T. R. Sim, D. Losic, Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges, Environ. Sci.: Water Res. Technol., 2015, 1, 298-305.
[109] A. Benchirouf, S. Palaniyappan, R. Ramalingame, P. Raghunandan, T. Jagemann, C. Müller, M. Hietschold, O. Kanoun, Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects, Sens. Actuators B, 2016, 224, 344-350.