跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊逸
研究生(外文):Jun-YiWu
論文名稱:奈米碳材/PEDOT:PSS複合薄膜之製備及其在可撓式透明導電電極與全固態超級電容器之應用
論文名稱(外文):Fabrication of nano-carbon/PEDOT:PSS hybrid thin films for flexible transparent conductive electrodes and all-solid-state supercapacitors
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:102
中文關鍵詞:氧化石墨烯奈米碳管聚二氧乙基噻吩聚苯乙烯磺酸可撓式透明導電電極超級電容器
外文關鍵詞:graphene oxidecarbon nanotubePEDOT:PSSflexibletransparentconductive electrodesupercapacitor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係有關使用奈米碳管(CNT)、還原氧化石墨烯(rGO)及其與導電高分子聚二氧乙基噻吩:聚苯乙烯磺酸(PEDOT:PSS)之複合物發展可撓式透明導電電極與超級電容器之研究。首先,利用刮刀塗佈法將CNT及氧化石墨烯(GO)分散液分別塗佈在聚對苯二甲酸乙二酯(PET)上作為可撓式透明導電電極,其中GO薄膜需進一步使用氫碘酸還原,結果顯示穿透度及電阻隨著塗佈層數增加而降低。接著,分別將CNT及GO分散液加入等體積之PEDOT:PSS及DMSO得到含0~0.1wt% CNT或GO的均勻分散液,後者並進一步以微波還原法製得rGO分散液,然後利用刮刀塗佈法將CNT與rGO的分散液分別塗佈在PET表面,製得CNT/PEDOT:PSS 與rGO/PEDOT:PSS複合薄膜作為可撓式透明導電電極,結果發現適量碳材的添加確實能夠建構導電網絡提升導電性,且兩者最低電阻都在1000 Ω左右且穿透度超過80%。最後,研究證實CNT/PEDOT:PSS 和rGO/PEDOT:PSS複合薄膜兩者亦皆可作為超級電容器之電極,且其電容值可隨薄膜厚度之適當增加而提升。此外,進一步使用聚乙烯醇/硫酸(PVA/H2SO4)製得的膠態電解質,分別和兩片CNT/PEDOT:PSS或 rGO/PEDOT:PSS電極組裝成可撓式全固態透明超級電容器,其穿透度皆超過56 %,並具有快速充放電的能力,且其電化學性能在彎折時皆可保留。所有的結果證實CNT/PEDOT:PSS或rGO/PEDOT:PSS可發展作為可撓式全固態透明超級電容器之電極材料。
This thesis concerns the developments of flexible transparent conductive electrodes and supercapacitors using carbon nanotube (CNT), reduced graphene oxide, and their hybrids with conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). At first, the CNT and rGO-based thin films were fabricated as flexible transparent conductive electrodes by the blade-coating of CNT or graphene oxide (GO) dispersion on polyethylene terephthalate (PET) and the followed GO reduction with hydroiodic acid for the case of GO. The decreases of transmittance and sheet resistance with the increase of layer numbers have been described. Secondly, CNT or GO (0~0.1wt%) was added to the equal volume mixture of PEDOT:PSS and dimethyl sulfoxide (DMSO) to yield homogeneous dispersions. For the case of GO, the dispersion was further microwave-treated to obtain the rGO dispersion. Then, the CNT or rGO dispersion was blade-coated on PET to form the CNT/PEDOT:PSS or rGO/PEDOT:PSS hybrid thin films as flexible transparent conductive electrodes. It was found that the appropriate addition of CNT or rGO indeed could effectively enhance the conductivity via the formation of conductive network. The lowest sheet resistance around 1000 Ω with a transmittance above 80% was obtained for both the hybrid thin films. Finally, it was demonstrated that both the CNT/PEDOT:PSS and rGO/PEDOT:PSS hybrid thin films also could be used as the electrodes for supercapacitors. The capacitance could be raised by appropriately increasing the thickness of hybrid thin films. Furthermore, the flexible transparent all-solid-state supercapacitors were fabricated with polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte between two CNT/PEDOT:PSS or rGO/PEDOT:PSS hybrid thin film-based electrodes. It was found that both the resulting supercapacitors had transmittances above 56% and could be quickly charged and discharged. Also, their electrochemical performance could be retained while bending. All the results revealed that both the CNT/PEDOT:PSS and rGO/PEDOT:PSS hybrid thin films could be developed as good electrode materials for flexible transparent supercapacitors.
中文摘要 I
Abstract II
Extended abstract IV
誌謝 VIII
總目錄 X
圖目錄 XIII
表目錄 XVII

第一章 緒論 1
1.1 石墨烯 1
1.1.1 石墨烯簡介 1
1.1.2 石墨烯製備 3
1.1.3 氧化石墨烯和還原氧化石墨烯 5
1.2 奈米碳管 9
1.2.1 奈米碳管簡介 9
1.2.2 奈米碳管製備 11
1.3 導電高分子 13
1.3.1 導電高分子 13
1.3.2 PEDOT:PSS 15
1.4 超級電容器之簡介 20
1.4.1 超級電容器基本原理 20
1.4.2 可撓式與透明超級電容器 25
1.5 研究動機 29
第二章 基本理論 31
2.1 循環伏安法理論 31
2.2 定電流充放電原理 33
2.3 電化學交流阻抗原理 35
第三章 實驗方法 38
3.1 實驗藥品與儀器 38
3.1.1 藥品 38
3.1.2 儀器 40
3.2 實驗步驟 42
3.2.1 GO製備 42
3.2.2 CNT薄膜製備 43
3.2.3 GO 薄膜製備 44
3.2.4 聯胺還原GO薄膜 44
3.2.5 氫碘酸還原GO薄膜 45
3.2.6 CNT/PEDOT:PSS薄膜製備 45
3.2.7 rGO/PEDOT:PSS薄膜製備 46
3.2.8 電化學測試 47
3.2.9 固態電解質 48
3.2.10 全固態電容器組裝 48
3.2.11 特性分析 49
第四章 結果與討論 51
4.1 可撓式透明導電膜 51
4.1.1 CNT透明導電膜 51
4.1.2 GO及rGO透明導電膜 55
4.1.3 CNT/PEDOT:PSS之可撓式透明導電膜 60
4.1.4 rGO/PEDOT:PSS可撓式透明導電膜 64
4.2 可撓式透明超級電容器 70
4.2.1 CNT/PEDOT:PSS 70
4.2.2 rGO/PEDOT:PSS 75
4.3 可撓式全固態透明超級電容器 80
4.3.1 CNT/PEDOT:PSS 80
4.3.2 rGO/PEDOT:PSS 86
第五章 結論 92
參考文獻 93


[1] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, 183-191.
[2] S. G. Kim, S. S. Lee, E. Lee, J. Yoon, H. S. Lee, Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity, RSC Adv., 2015, 5, 102567-102573.
[3] H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, G. Yang, Transparent conductive reduced graphene oxide thin films produced by spray coating, Sci. China-Phys. Mech. Astron., 2014, 58, 1-5.
[4] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Mater. Today, 2012, 15, 86-97.
[5] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 2010, 22, 3906-3924.
[6] D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite, Sens. Actuators B, 2016, 225, 233-240.
[7] B. Qiu, Q. Li, B. Shen, M. Xing, J. Zhang, Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage, Appl. Cat. B: Environ., 2016, 183, 216-223.
[8]Y. Zheng, D. Lee, H. Y. Koo, S. Maeng, Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing, Carbon, 2015, 81, 54-62.
[9]C. H. Lin, K. T. Chen, J. R. Ho, J. W. J. Cheng, R. C. C. Tsiang, PEDOT:PSS/graphene nanocomposite hole-injection layer in polymer light-emitting diodes, J. Nanotechnol., 2012, 2012, 1-7.
[10] T. J. Fan, C. Q. Yuan, W. Tang, S. Z. Tong, Y. D. Liu, W. Huang, Y. G. Min, A. J. Epstein, A novel method of fabricating flexible transparent conductive large area graphene film, Chin. Phys. Lett., 2015, 32, 076802.
[11] L. Wang, T. Wu, S. Du, M. Pei, W. Guo, S. Wei, High performance supercapacitors based on ternary graphene/Au/polyaniline (PANI) hierarchical nanocomposites, RSC Adv., 2016, 6, 1004-1011.
[12] H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology, 2010, 21, 505204.
[13] D. S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, 23, 1482-1513.
[14] M. Cai, D. Thorpe, D. H. Adamson, H. C. Schniepp, Methods of graphite exfoliation, J. Mater. Chem., 2012, 22, 24992.
[15] J. Pu, L. Tang, C. Li, T. Li, L. Ling, K. Zhang, Q. Li, Y. Yao, Chemical vapor deposition growth of few-layer graphene for transparent conductive films, RSC Adv., 2015, 5, 44142-44148.
[16] W. H. Lee, J. Park, S. H. Sim, S. Lim, K. S. Kim, B. H. Hong, K. Cho, Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors, J. Am. Chem. Soc., 2011, 133, 4447-4454.
[17] M. Choucair, P. Thordarson, J. A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nat. Nanotechnol., 2009, 4, 30-33.
[18] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, Graphene oxide: the mechanisms of oxidation and exfoliation, J. Mater. Sci., 2012, 47, 4400-4409.
[19] 劉博滔, 郭翰霖, 石墨烯複合透明導電膜之研究, 技術學刊, 2014, 29, 173-179.
[20] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
[21] W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, Q. H. Yang., Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage, ACS Nano, 2009, 3, 3730-3736.
[22] H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater., 2011, 23, 1089-1115.
[23] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon, 2012, 50, 3210-3228.
[24] T. Szabo, O. Berkesi, P. Forgo´, K. Josepovits, Y. Sanakis, D. Petridis, I. De´ka´ny, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 2006, 18, 2740-2749.
[25] C. Hontoria-Lucas, A. J. López-Peinado, J. de D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, 1995, 33, 1585-1592.
[26] H. K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M. H. Park, K. H. An, I .J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, J. Am. Chem. Soc., 2008, 130, 1362-1366.
[27] H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, M. Ren, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Adv. Colloid Interface Sci., 2013, 195-196, 19-40.
[28] X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, H. Zhang, In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces, J. Phys. Chem. C, 2009, 113, 10842-10846.
[29] Q. Lin, Y. Li, M. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature, Sens. Actuators B, 2012, 173, 139-147.
[30] S. Jayabal, P. Viswanathan, R. Ramaraj, Reduced graphene oxide–gold nanorod composite material stabilized in silicate sol–gel matrix for nitric oxide sensor, RSC Adv., 2014, 4, 33541.
[31] H. M. A. Hassan, V. Abdelsayed, A. E. R. S. Khder, K. M. AbouZeid, J. Terner, M. S. El-Shall, S. I. Al-Resayes, A. A. El-Azhary, Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem., 2009, 19, 3832.
[32] S. Iijima, Helical microtubules of graphitic carbon, Lett. Nat., 1991, 354, 56-58.
[33] 曾士豪, 邱建超, 戴念華, 奈米碳管之製程技術簡介, 真空科技, 2006, 19, 17-25.
[34] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 2010, 35, 357-401.
[35] S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 2013, 5, 1727-1752.
[36] J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T. A. Kowalewski, Z. Szymanski, L. Stobinski, Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength, Phys. Status Solidi B, 2015, 252, 1860-1867.
[37] P. Kanninen, N. D. Luong, H. Sinh le, I. V. Anoshkin, A. Tsapenko, J. Seppala, A. G. Nasibulin, T. Kallio, Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films, Nanotechnology, 2016, 27, 235403.
[38] M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells, Org. Electron., 2015, 21, 86-91.
[39] S. Das, R. N. P. Vemuri, T. L. Alford, Enhanced conductivity of Y-doped ZnO thin films by incorporation of multiple walled carbon nanotubes, Thin Solid Films, 2013, 527, 92-95.
[40] S. Yellampalli, Carbon nanotubes - polymer nanocomposites, InTech, 2011.
[41] V. Thirumal, A. Pandurangan, R. Jayavel, S. R. Krishnamoorthi, R. Ilangovan, Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications, Curr. Appl. Phys., 2016, 16, 816-825.
[42] T. Somanathan, N. Gokulakrishnan, P. Arumugam, Low temperature growth of double walled carbonnanotubes using FeMoMgO catalyst, J. Nanosci. Nanotechnol., 2013, 13, 1-5.
[43] 蘇俊銘, 聚二氧乙基噻吩/聚苯乙烯磺酸(PEDOT:PSS)之製備與其含無電鍍銀微粒之導電膠的導電度研究, 臺灣大學高分子科學與工程學研究所碩士論文, 2012.
[44] 翁郁婷, 潘孝安, 吳乃立, 導電高分子於超高電容器之應用, 化工, 2013, 60, 73.
[45] Y. Cong, S. Liu, H. Chen, Fabrication of conductive polypyrrole nanofibers by electrospinning, J. Nanomater., 2013, 2013, 1-6.
[46] T. S. Kang, S. W. Lee, J. Joo, J. Y. Lee, Electrically conducting polypyrrole fibers spun by electrospinning, Syn. Met., 2005, 153, 61-64.
[47] R. Liu, Z. Liu, Polythiophene: Synthesis in aqueous medium and controllable morphology, Sci. Bull., 2009, 54, 2028-2032.
[48] J. Huang, J. A. Moore, J. H. Acquaye, R. B. Kaner, Mechanochemical route to the conducting polymer polyaniline, Macromolecules, 2005, 38, 2581-2590.
[49] A. G. MacDiarmi, Synthetic Metals: A novel role for organic polymers (Nobel lecture), Angew. Chem. Int. Edi., 2001, 40, 2581-2590.
[50] G. W. Huang, H. M. Xiao, H. Q. Shi, S. Y. Fu, Controllable synthesis of novel sandwiched polyaniline/ZnO/polyaniline free-standing nanocomposite films, J. Polym. Sci. Part A: Polym. Chem., 2012, 50, 2794-2801.
[51] I. Y. Jeon, L. S. Tan, J. B. Baek, Synthesis and electrical properties of polyaniline/polyaniline grafted multiwalled carbon nanotube mixture viain situstatic interfacial polymerization, J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 1962-1972.
[52] G. W. Huang, H. M. Xiao, S. Y. Fu, Novel vertical spinning preparation of free-standing carbon nanotube–polyaniline composite films with high electrical conductivity, J. Mater. Chem. C, 2014, 2, 2758.
[53] J. Liu, J. Sun, L. Gao, A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films, J. Phys. Chem. C, 2010, 114, 19614-19620.
[54] N. A. Kumar, H. J. Choi, Y. R. Shin, D. W. Chang, L. Di, J. B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors, ACS Nano, 2012, 6, 1715-1723.
[55] P. Phumman, S. Niamlang, A. Sirivat, Fabrication of poly(p-phenylene)/zeolite composites and their responses towards ammonia, Sensors (Basel), 2009, 9, 8031-8046.
[56] M. Gerard, A. Chaubey, B. D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron., 2002, 17, 345-359.
[57] S. van Reenen, M. Scheepers, K. van de Ruit, D. Bollen, M. Kemerink, Explaining the effects of processing on the electrical properties of PEDOT:PSS, Org. Electron., 2014, 15, 3710-3714.
[58] J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, N. S. Sariciftci, Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives, Thin Solid Films, 2013, 536, 211-215.
[59] U. Lang, E. Müller, N. Naujoks, J. Dual, Microscopical Investigations of PEDOT:PSS Thin Films, Adv. Funct. Mater., 2009, 19, 1215-1220.
[60] P. K. Choudhury, D. Bagchi, C. S. S. Sangeeth, R. Menon, Modified conformation and physical properties in conducting polymers due to varying conjugation and solvent interactions, J. Mater. Chem., 2011, 21, 1607-1614.
[61] D. Yoo, J. Kim, J. H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems, Nano Res., 2014, 7, 717-730.
[62] E. Kymakis, G. Klapsis, E. Koudoumas, E. Stratakis, N. Kornilios, N. Vidakis, Y. Franghiadakis, Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics, Eur. Phys. J. Appl. Phys., 2007, 36, 257-259.
[63] Z. Zhao, G. F. Richardson, Q. Meng, S. Zhu, H. C. Kuan, J. Ma, PEDOT-based composites as electrode materials for supercapacitors, Nanotechnology, 2016, 27, 042001.
[64] Z. Lan, S. Gao, J. Wu, J. Lin, High-performing dye-sensitized solar cells based on reduced graphene oxide/PEDOT-PSS counter electrodes with sulfuric acid post-treatment, J. Appl. Polym. Sci., 2015, 132, 42648(42641-42645).
[65] S. K. M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. Denier van der Gon, W. R. Salaneck, M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films, Syn. Met., 2003, 139, 1-10.
[66] S. Timpanaro, M. Kemerink, F. J. Touwslager, M. M. De Kok, S. Schrader, Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy, Chem. Phys. Lett., 2004, 394, 339-343.
[67] F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, L. Leenders, PEDOT/PSS: synthesis, characterization, properties and applications, Syn. Met., 2003, 135-136, 115-117.
[68] X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. Denier van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, W. R. Salaneck, Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study, Polym. Phys., 2003, 41, 2561-2583.
[69] T. H. Meen, K. L. Chen, Y. H. Chen, W. R. Chen, D. W. Chou, W. H. Lan, C. J. Huang, The effects of dilute dulfuric acid on sheet resistance and transmittance in Poly(3,4-thylenedioxythiophene): Poly(styrenesulfonate) films, Inter. J. Photoenergy, 2013, 2013, 1-6.
[70] J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Syn. Met., 2002, 126, 311-316.
[71] L. A. A. Pettersson, S. Ghosh, O. Ingan, Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate), Org. Electron., 2002, 3, 143-148.
[72] Y. Xia, K. Sun, J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater., 2012, 24, 2436-2440.
[73] J. K. Chang, M. T. Lee, W. T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J. Power Sources, 2007, 166, 590-594.
[74] D. Kalpana, K. S. Omkumar, S. S. Kumar, N. G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor, Electrochim. Acta, 2006, 52, 1309-1315.
[75] 袁磊, 王朝陽, 副志兵, 張厚琼, 唐永健, 超級電容器電極材料的研究進展, 材料導報:綜述篇, 2010, 24, 11-14.
[76] M. S. Halper, J. C. Ellenbogen, Supercapacitors: A brief overview, MITRE Nanosystems Group, 2006.
[77] J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, Phys. Chem. Chem. Phys., 2011, 13, 15384-15402.
[78] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7, 845-854.
[79] Q. Yang, S. K. Pang, K. C. Yung, Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution, J. Electroanalyt. Chem., 2014, 728, 140-147.
[80] Y. Liu, B. Weng, J. M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G. G. Wallace, J. Chen, High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films, Sci. Rep., 2015, 5, 17045.
[81] Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li, F. Kang, Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices, J. Mater. Chem. A, 2013, 1, 12432.
[82] Y. Hou, Y. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Lett., 2010, 10, 2727-2733.
[83] C. Peng, S. Zhang, D. Jewell, G. Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors, Prog. Nat. Sci., 2008, 18, 777-788.
[84] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, J. Mater. Chem. A, 2014, 2, 10776.
[85] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources, 2006, 153, 413-418.
[86] Y. Han, B. Ding, H. Tong, X. Zhang, Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites, J. Appl. Polym. Sci., 2011, 121, 892-898.
[87] F. Alvi, M. K. Ram, P. A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor, Electrochim. Acta, 2011, 56, 9406-9412.
[88] L. Chen, C. Yuan, H. Dou, B. Gao, S. Chen, X. Zhang, Synthesis and electrochemical capacitance of core–shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites, Electrochim. Acta, 2009, 54, 2335-2341.
[89] S. S. Karade, B. R. Sankapal, Room temperature PEDOT:PSS encapsulated MWCNTs thin film for electrochemical supercapacitor, J. Electroanalyt. Chem., 2016, 771, 80-86.
[90] J. W. Kim, B. G. Choi, All-solid state flexible supercapacitors based on graphene/polymer composites, Mater. Chem. Phys., 2015, 159, 114-118.
[91] Y. T. Lai, N. H. Tai, One-step process for high-performance, adhesive, flexible transparent conductive films based on p-type reduced graphene oxides and silver nanowires, ACS Appl. Mater. Interfaces, 2015, 7, 18553-18559.
[92] J. E. McCarthy, C. A. Hanley, L. J. Brennan, V. G. Lambertini, Y. K. Gun'ko, Fabrication of highly transparent and conducting PEDOT:PSS films using a formic acid treatment, J. Mater. Chem. C, 2014, 2, 764-770.
[93] 黃桂武, 軟性印製透明導電高分子材料技術發展, 光連雙月刊, 2012, 102, 58-65.
[94] B. J. Kim, S. H. Han, J. S. Park, Properties of CNTs coated by PEDOT:PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes, Surf. Coat. Technol., 2015, 271, 22-26.
[95] S. Kim, A. Cho, S. Kim, W. Cho, M. H. Chung, F. S. Kim, J. H. Kim, Multi-purpose overcoating layers based on PVA/silane hybrid composites for highly transparent, flexible, and durable AgNW/PEDOT:PSS films, RSC Adv., 2016, 6, 19280-19287.
[96] T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, W. Huang, High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors, J. Mater. Chem. A, 2016, 4, 10493-10499.
[97] J. Heinze, Cyclic voltammetry-Electrochemical Spectroscopy, Angew. Chem. Int. Edi., 1984, 23, 831-918.
[98] X. Li, A. R. Barron, Introduction to cyclic voltammetry measurements, OpenStax CNX, 2010.
[99] J. W. Park, W. Na, J. Jang, Hierarchical core/shell Janus-type α-Fe2O3/PEDOT nanoparticles for high performance flexible energy storage devices, J. Mater. Chem. A, 2016, 4, 8263-8271.
[100] 游文雄, 鋰離子電池混合金屬氧化物材料之電化學特性分析, 國立中央大學化學工程與材料工程學系碩士論文, 2000.
[101] 簡志瑋, 硫化物對三價鉻電鍍行為的影響, 國立臺灣大學材料科學與工程學系碩士論文, 2010.
[102] 陳盈助, 電解液配方對鋰離子電池性能之研究, 國立成功大學化學工程學系碩士論文, 2002.
[103] S. William, Hummers JR, E. O. Richard, Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, 80, 1339-1339.
[104] F. Li, K. Cai, S. Shen, S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films, Syn. Met., 2014, 197, 58-61.
[105] 吳奕諼, 碲化鉍合金熱電薄膜發電器之設計與製造, 國立台灣科技大學機械工程學系碩士論文, 1999.
[106] 洪文進, 許登貴, 萬明安, 郭書瑋, 蘇昭瑾, ITO 透明導電薄膜:從發展與應用到製備與分析, 化學, 1995, 63, 409-418.
[107] S. K. Kim, T. Liu, X. Wang, Flexible, highly durable, and thermally stable SWCNT/Polyimide transparent electrodes, ACS Appl. Mater. Interfaces, 2015, 7, 20865-20874.
[108] D. N. H. Tran, S. Kabiri, T. R. Sim, D. Losic, Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges, Environ. Sci.: Water Res. Technol., 2015, 1, 298-305.
[109] A. Benchirouf, S. Palaniyappan, R. Ramalingame, P. Raghunandan, T. Jagemann, C. Müller, M. Hietschold, O. Kanoun, Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects, Sens. Actuators B, 2016, 224, 344-350.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊