跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.163) 您好!臺灣時間:2025/11/25 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高乃靜
研究生(外文):Nai-Ching Kao
論文名稱:資料探勘應用於旅行業獲利性顧客屬性分析與需求預測之研究
論文名稱(外文):Data Mining Applied in Analyzing Characteristics of Profitability Customers and Researching the Tourist Demand Forecast in Travel Industry
指導教授:翁振益翁振益引用關係
指導教授(外文):作者未提供
學位類別:碩士
校院名稱:銘傳大學
系所名稱:管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:94
中文關鍵詞:RFM分析購物籃分析決策樹旅行業資料探勘
外文關鍵詞:RFM AnalysisBasket AnalysisDecision TreesTravel IndustryData Mining
相關次數:
  • 被引用被引用:5
  • 點閱點閱:582
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
旅行業在競爭激烈的環境下,以80/20法則來看,旅行業者若能掌握「誰是目標顧客」,與顧客可能的「旅遊地點」之資訊,了解具獲利性高且重遊意願高的顧客屬性,和顧客偏好的旅遊地點,以擬定最佳的行銷策略,必能以最小化成本而有效獲利,進而維持 或增加市場佔有率。
本研究主要以國外旅遊市場為研究範圍,透過問卷調查方式收集台灣北部曾出國旅遊居民之人口變數、旅遊行為和旅遊意見資料,問卷發放期間從民國93年10月至民國94年2月。以資料探勘技術做為本文的研究方法:首先利用RFM(最近出國日期、出國旅遊頻率和出國旅遊花費)模型衡量顧客獲利性高低;接著以資料探勘技術的決策樹和購物籃分析進行獲利性顧客屬性分析,且以購物籃分析進行重遊意願不同程度之顧客屬性分析;最後以購物籃分析進行旅遊地點偏好分析,以探勘不同屬性的顧客其最適交叉銷售的旅遊地點,即預測不同顧客下一個可能前往的旅遊地點為何,便於旅行業者促銷合宜旅遊商品給顧客,提高購買率。
研究結果得知依「獲利性」所區隔之二個不同顧客群,藉由每年總收入、通常是否自己提議出國、通常與誰出國旅遊和通常出國旅遊的月份等屬性,可以了解高低獲利性顧客之屬性。另外,藉由整體顧客曾經到哪些國家旅遊之購物籃分析結果推論出,到過加拿大的顧客下一個旅遊地點以美國的機率最高,到過歐洲的顧客接著去美國或東北亞旅遊的機率最高,先去港澳、大陸、澳洲或美國的顧客下一個旅遊地點皆以東南亞的機率最高,依關連規則整體來看,發現近幾年台灣人出國旅遊景點似乎偏愛亞洲旅遊景點。
本研究之「顧客面」與「產品面」結果,可協助旅行業者了解不同獲利性區隔和重遊意願程度之顧客屬性,具體提供旅行業者可針對不同之顧客,規劃合宜的行銷與旅遊產品策略。
Under the fierce competition environment of too many outbound travel agencies in Taiwan, the travel agencies will have the change to maintain or increase the market share by proposing the marketing strategies of minimizing cost and maximizing profit according to the 80/20 rule, which means to focus the target traveler of those “Customer of profitability” and precisely the “next preferred travel destination”.
The research subject is foreign tourist market. We grant questionnaires investigation to collect demographic variables, travel behaviors and travel suggestion for residents of northern region. The questionnaire was collected from October of 2004 to February of 2005. The analyzing method of research is Data Mining Techniques. First, the profitability customers are defined by the RFM theory (R is the recent times of travel abroad, F is the frequency of travel abroad, and M is the money spent of travel abroad). Second, the Decision Tree and Basket Analysis of Data Mining Techniques were used to analyze the profitability customers’ characteristics. And the Basket Analysis was used to analyze the different willingness of revisiting customers’ characteristics. Third, the Basket Analysis was applied to predict the traveler’s next preferred abroad destination. It offers the information for the administrator of travel industry to plan marketing strategies to improve the buying rate.
The research will segment two segmentations by using profitability. It discovered that the characteristics, such as the annual gross income, the traveler suggested going abroad by oneself, the travel abroad companion and the months of travel, are appropriated segmentation bases of targeting the value customers. We get some information from the Basket Analysis of travel countries. The preferred abroad predicted destination results are that those who have traveled Canada will next visit America with high probability, those who have traveled Europe will next visit America or Northeast Asia with high probability and those who have traveled Hong Kong, China, Australia or America will next visit Southeast Asia with high probability. According to the whole Association Rule, the research finds that Taiwanese seems to prefer Scenic spot of Asia in recent years.
At last, the research result also provided the promotion strategies of travel destination for the outbound travel agencies to focus on the characteristics of profitability customers and willingness of revisiting.
目錄 Ⅰ
圖目錄 III
表目錄 IV
第一章 緒論 1
1.1 研究背景 1
1.2 研究問題 2
1.3 研究目的 3
1.4 研究流程 4
第二章 文獻探討 5
2.1 旅行業之特性 5
2.2 顧客獲利性 7
2.3 重遊意願 9
2.4 市場區隔 10
2.4.1 市場區隔定義 10
2.4.2 市場區隔變數 11
2.4.3 市場區隔方法 12
2.5 交叉銷售理論 13
2.6 資料探勘介紹 14
2.6.1 資料探勘的定義 14
2.6.2 資料探勘的弁?16
2.6.3 資料探勘的方法 17
2.7 相關研究探討 19
2.8 小結 20
第三章 研究方法 21
3.1 旅行業探勘流程 21
3.2 問卷設計與抽樣方法 22
3.3 資料分析方法 24
3.4 顧客獲利模式區隔準則定義 26
3.5 顧客屬性分析 28
3.6 顧客旅遊地點探勘層級 30
3.7 輔助軟體 30
第四章 研究結果與分析 32
4.1 顧客基本資料分析 32
4.2 獲利性區隔之顧客屬性分析 36
4.2.1 以決策樹進行顧客屬性分析 36
4.2.2 以購物籃進行顧客屬性分析 40
4.3 重遊意願之顧客屬性分析 45
4.4 旅遊商品偏好分析 52
4.4.1 整體樣本之旅遊商品偏好分析 52
4.4.2 獲利性高低之旅遊商品偏好分析 52
4.4.3 重遊意願之旅遊商品偏好分析 53
4.4.4 人口屬性之旅遊商品偏好分析 55
4.4.5 旅遊商品偏好之小結 70
第五章 結論與建議 74
5.1 結論 74
5.2 建議 75
5.3 研究限制與後續研究方向 76
參考文獻 77
附錄一 顧客意見調查表 81
一、英文部分
1.Anand, S. S., Patrik, A. R., Hughes, J. G. and Bell, D. A., “A Data Mining Methodology for Cross-Sale,” Knowledge Based System, Vol. 10, No. 7, 1998, pp. 449-461.
2.Apte, C., Liu, B., Pednault, E. P. D. and Smyth, P., “Business Applications of Data Mining,” Communication of the ACM, Vol. 45, No. 8, 2002, pp. 49-53.
3.Berger, P. D. and Nasr, N. I., “Customer Lifetime Value: Marketing Models and Application,” Journal of Interactive Marketing, Vol. 12, No. 1, 1998, pp. 17-30.
4.Berry, M. J. A. and Linoff, G., Data Mining Techniques: for Marking, Sales, and Customer Support, Canada: Wiley and Sons, 1997.
5.Berson, A., Smith, S. and Thearling, K., Building Data Mining Application for CRM, New York: McGraw-Hill Inc., 2001.
6.Blattberg, R. C. and Deighton, J., “Manage Marketing by the Customer Equity Test,” Harvard Business Review, Vol. 74, No. 4, 1996, pp. 136-144.
7.Boote, A. S., “Market Segmentation by Personal Values and Salient Product Attributes,” Journal of Advertising Research, Vol. 21, No. 1, 1981, pp. 29-35.
8.Bowen, J. T., “Market Segmentation in Hospitality Research: No Longer a Sequential Process,” International Journal of Contemporary Hospitality Management, Vol. 10, No. 7, 1998, pp. 289-296.
9.Brown, H., “Brand Loyalty-Fact or Fiction,” Advertising Age, Vol. 23, No. 1, 1952, pp. 53-55.
10.Chen J. S., “Market Segmentation by Tourists’ Sentiments,” Annals of Tourism Research, Vol. 30, No. 1, 2003, pp. 178-193.
11.Engel, J. F., Kollat, D. J. and Blackwell, R. D., Consumer Behavior, Holt: Rinehart and Winston, 1968.
12.Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P., “The KDD Process for Extracting Useful Knowledge from Volumes of Data,” Communications of the ACM, Vol. 39, No. 11, 1996, pp. 27-34.
13.Heskett, J. L., Thomas O. J., Loeman, G. W., Sasser, W. E. and Schlesinger, L. A., “Putting the Service-Profit Chain to Work,” Harvard Business Review, Vol. 72, No. 2, 1994, pp. 164-172.
14.Hughes, A. M., Strategic Database Marketing, Chicago: Probus, 1994.
15.Jones, T. O. and Sasser, W. E., “Why Satisfied Customers Defect,” Harvard Business Review, Vol. 73, No. 6, 1995, pp. 88-99.

16.Kahan, R., “Using Database Marketing Techniques to Enhance Your One-to-One Marketing Initiatives,” Journal of Consumer Marketing, Vol. 15, No. 5, 1998, pp. 491-493.
17.Kamakura, W. A., Wedel, M., Rosa, F. D. and Mazzon, J. A., “Cross Selling Through Database Marketing: A Mixed Data Factor Analyzer for Data Augmentation and Prediction,” International Journal of Research in Marketing, Vol. 20, No. 1, 2003, pp. 45-65.
18.Kim, J., Wei, S. and Ruys, H., “Segmenting the Market of West Australian Senior Tourists Using an Artificial Neural Network”, Tourism Management, Vol. 24, No. 5, 2003, pp. 25-34.
19.Kotler, P., Marketing Management: Analysis, Planning, Implementation, and Control, 6th ed., New Jersey: Prentice-Hall, 1988.
20.Kotler, P., Marketing Management: Analysis, Planning, Implementation, and Control, 9th ed., New Jersey: Prentice-Hall, 1997.
21.Kotler, P., Bowen, J. and Makens, J., Marketing for Hospitality and Tourism, New Jersey: Prentice Hall, 1999.
22.Magnini, V. P., Honeycutt, E. D. and Hodge, S. K., “Data Mining for Hotel Firms: Use and Limitations,” Cornell Hotel and Restaurant Administration Quarterly, Vol. 44, No. 2, 2003, pp. 94-105.
23.Morrison. A. M., Hospitality and Travel Marketing, New York: Delmar, 1996.
24.Mulhern, F. J., “Customer Profitability Analysis: Measurement, Concentration, and Research Directions,” Journal of Interactive Marketing, Vol. 13, No. 1, 1999, pp. 25-40.
25.Murphy, P. E. and Enis, B. M., “Classifying Products Strategically,” Journal of Marketing, Vol. 50, No. 3, 1986, pp. 24-42.
26.Nash, D. and Sterna-Karwat, A., “An Application of DEA to Measure Branch Cross Selling Efficiency,” Computers Operations Reserch, Vol. 23, No. 4, 1996, pp. 385-392.
27.Olmeda, I. and Sheldon, P. J., “Data Mining Techniques and Applications for Tourism Internet Marketing,” Journal of Travel and Tourism Marketing, Vol. 11, No. 2/3, 2001, pp. 1-20.
28.Ostrowski, P. L., O’Brien, T. V. and Gordon, G. L., “Service Quality and Customer Loyalty in the Commercial Airline Industry,” Journal of Travel Research, Vol. 32, No. 2, 1993, pp. 16-24.
29.Ott, J., “Successfully Development and Implementing Continuous Relationship Management,” eBusiness Executive Report, Vol. 3, No. 1, 2000, pp. 26-30.


30.Parasuraman, A., Zeithaml, V. A. and Berry, L. L., “A Conceptual Model of Service Quality and Its Implications for Future Research,” Journal of Marketing, Vol. 49, No. 4, 1985, pp. 41-50.
31.Peacock, P. R., “Data Mining in Marketing: Part1,” Marketing Management, Vol. 6, No. 4, 1998, pp. 9-18.
32.Pride, W. M. and Ferrell, O. C., Marketing: Basic Concepts and Decisions, 3th ed., Boston: Houghton Mifflin, 1983.
33.Rafalski, E., “Using Data Mining/Data Repository Methods to Identify Marketing Opportunities in Health Care,” Journal of Consumer Marketing, Vol. 19, No. 7, 2002, pp. 607-613.
34.Roiger, R. J. and Geatz, M. W., Data Mining: a Tutorial-Based Primer, Boston: Addison Wesley, 2003.
35.Schuns, J. M. and Schroder, G. J., “Segment Selection by Relationship Strength,” Journal of Direct Marketing, Vol. 10, No. 3, 1996, pp. 69-79.
36.Sellers, P., “Getting Customer to Love You,” Fortune, Vol. 119, No. 6, 1989, pp. 38-44.
37.Simoudis, E., “Reality Check for Data Mining,” IEEE Expert, Vol. 11, No. 5, 1996, pp. 26-33.
38.Singh, J. and Sirdeshmukh, D., “Agency and Trust Mechanisms in Consumer Satisfaction and Loyalty Judgments”, Journal of the Academy of Marketing Science, Vol. 28, No. 1, 2000, pp. 150-167.
39.Smith, K. A., Willis, R. J. and Brooks, M., “An Analysis of Customer Retention and Insurance Claim Patterns Using Data Mining: a Case Study,” Journal of the Operational Research Society, Vol. 51, No. 5, 2000, pp. 532-541.
40.Smith, W. R., “Product Differentiation and Market Segmentation as Alternative Marketing Strategies,” Journal of Marketing, Vol. 21, No. 1, 1956, pp. 3-8.
41.Wayland, R. E. and Cole, P. M., “Turn Customer Service into Customer Profitability,” Management Review, Vol. 83, No. 7, 1994, pp. 22-24.
42.Wedel, M. and Kamakura, W. A., Market Segmentation: Conceptual and Methodological Foundations, London: Kluwer Academic Publishers, 2000.
43.Wind, Y., “Issues and Advances in Segmentation Research,” Journal of Marketing Research, Vol. 15, No. 3, 1978, pp. 317-337.
44.Wyner, G. A., “Customer Valuation: Linking Behavior and Economics,” Marketing Research, Vol. 8, No. 2, 1996, pp. 36-38.
45.Yeo, A. C. and Smith, K. A., “Implementing a Data Mining Solution for an Automobile Insurance Company: Reconciling Theoretical Benefits with Practical Considerations,” Annals of Cases on Information Technology, Vol. 8, No. 2, 2003, pp. 63-73.

二、中文部分
1.王念萍,「探討信用卡市場區隔與顧客價值分析」,國立東華大學企業管理學系碩士論文,民國92年6月。
2.交通部觀光局,「國人旅遊狀況調查報告」,台北:觀光局,民國92年。
3.交通部觀光局,「觀光統計年報」,台北:觀光局,民國93年。
4.交通部觀光局,「觀光統計年報」,台北:觀光局,民國94年。
5.林燈燦,旅行業經營管理-理論與實務,台北:品度出版社,民國90年。
6.陳石麟,「資料探勘於預測國人出國觀光需求之應用-以整體、香港和澳門為例」,國立台灣大學資訊管理研究所碩士論文,民國92年6月。
7.陳肇男,「旅遊行程安排及探勘分析之實作」,國立雲林科技大學電子工程與資訊工程技術研究所碩士論文,民國89年6月。
8.連惟謙,「應用資料分析技術進行顧客流失與顧客價值之研究」,私立中原大學資訊管理研究所碩士論文,民國93年6月。
9.薛主堅,「渡假生活型態於澎湖旅遊市場區隔之研究」,國立台北科技大學生產系統工程與管理研究所碩士論文,民國90年6月。
10.薛雅云,「應用類神經網路於休閒事業顧客關係管理之研究-以賞鯨生態旅遊為例」,私立臺中健康暨管理學院資訊科技研究所碩士論文,民國93年6月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top