跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣亞軒
研究生(外文):CHIANG, YA-HSUAN
論文名稱:應用區間二型強健多項式模糊時延相依系統之雙向轉換器研製
論文名稱(外文):Design and Implementation of a Bidirectional Converter Using Interval Type-2 Robust Polynomial Fuzzy Systems with Time-Delay Dependent
指導教授:余國瑞余國瑞引用關係
指導教授(外文):YU, GWO-RUEY
口試委員:李祖聖蔡清池黃國勝張淵智
口試委員(外文):LI, TZUU-HSENG S.TSAI, CHING-CHINHWANG, KAO-SHINGCHANG, YUAN-CHIH
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:202
中文關鍵詞:區間二型強健多項式模糊時延相依系統雙向轉換器平方和
外文關鍵詞:Interval Type-2 polynomial fuzzy control system with time-delay dependentBidirectional converterSum of square
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用區間二型(IT2)強健多項式模糊時延相依系統,設計直流/直流雙向轉換器之強健H∞控制器。本論文於推導之非理想狀態空間模型中狀態變數加入誤差積分項,使雙向轉換器輸出電壓之穩態誤差能趨近於零。本論文將雙向轉換器之升、降壓模式存在之二極體偏壓視為一固定之外在干擾訊號,並以H∞指標抑制干擾對系統輸出之影響,同時考量元件特性造成之時間延遲回授訊號,及系統參數的不確定性,推導定理一為雙向轉換器之IT2 H∞多項式模糊時延相依穩定定理。此外,以模型參數不確定性克服實際操作元件參數變動,導致降低控制性能問題,推導定理二為雙向轉換器之IT2強健多項式模糊時延相依穩定定理,將定理一及定理二之穩定條件式以平方和(SOS)形式表示。最後,以自行研製之最大額定功率2kW雙向轉換器及TI控制板,實現強健H∞多項式時延相依系統之控制,並透過輸入電壓變動、Duty干擾、負載變動、電感變動、及電容變動等測試,與未考慮時延之強健多項式做比較,突顯所設計之控制器性能為最優異的。
This thesis adopts Interval Type-2(IT2) Robust Polynomial fuzzy systems with time-delay dependent to design robust H∞ controller of DC-DC bidirectional converter. By adding integration of tracking error to non-ideal state-space equations, steady error of output of bidirectional converter approaches 0. To derive first theorem of IT2 H∞ Polynomial fuzzy time-delay dependent stability theorem of bidirectional converter, considering diode bias of both buck and boost mode to be a fixed disturbance signal, the influence of disturbance signal is attenuated by H∞ performance index, also considering time-delay feedback signal and uncertainty of system parameter caused by component characteristics. To derive second theorem of IT2 robust Polynomial fuzzy time-delay dependent stability theorem by using model parameter uncertainty, which can overcome the variation of component parameter which reduce control performance. First and second theorem are expressed in SOS(Sum of Square) form. The robust H∞ polynomial time-delay dependent system controller is achieved by bidirectional converter with 2kW rated power and TI microprocessor. To prove the performance of the designed controller is better than robust polynomial controller without considering time-delay by comparing with the input voltage variation, duty disturbance, load variation, inductance variation and capacitance variation experiment.
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 論文大綱 6
第二章 雙向轉換器之系統架構與電路動作原理 7
2-1 雙向轉換器之系統架構 7
2-2 雙向轉換器之電路動作原理 8
2-2-1 雙向轉換器之電路架構 8
2-2-2 降壓模式 10
2-2-3 升壓模式 13
第三章 控制器原理與設計 16
3-1 雙向轉換器之多項式時延相依控制系統模型 16
3-2 IT2H∞多項式模糊時延相依控制系統穩定性分析 18
3-3 IT2強健多項式模糊時延相依控制系統穩定性分析 39
第四章 雙向轉換器之周邊電路介紹與設計 68
4-1 雙向轉換器控制系統 68
4-2 周邊電路設計 68
4-2-1 電壓回授電路 68
4-2-2 電感電流回授電路 70
4-2-3 功率開關驅動電路 71
第五章 微處理器及軟體流程規劃 72
5-1 微處理器介紹 72
5-2 程式流程 73
5-2-1 主程式流程 73
5-2-2 A/D中斷副程式 74
5-2-3 多項式時延相依控制系統降壓模式流程 75
5-2-4 多項式時延相依控制系統升壓模式流程 75
5-2-5 保護副程式流程 76
第六章 雙向轉換器之電腦模擬 77
6-1 電氣規格 77
6-2 模擬架構 78
6-3 時間常數計算 82
6-4 降壓模式模擬 84
6-4-1 降壓模式:基本穩定模擬 85
6-4-2 降壓模式:輸入電壓變動模擬 87
6-4-3 降壓模式:Duty干擾模擬 89
6-4-4 降壓模式:負載變動模擬 92
6-4-5 降壓模式:電感變動模擬 94
6-4-6 降壓模式:電容變動模擬測試 97
6-5 升壓模式模擬 100
6-5-1 升壓模式:基本穩定模擬 101
6-5-2 升壓模式:輸入電壓變動模擬 104
6-5-3 升壓模式:Duty干擾模擬 106
6-5-4 升壓模式:負載變動模擬 109
6-5-5 升壓模式:電感變動模擬 111
6-5-6 升壓模式:電容變動模擬測試 113
第七章 雙向轉換器之實作與實測 117
7-1 實體電路 117
7-2 降壓模式實驗 119
7-2-1降壓模式:基本穩定實驗測試 120
7-2-2降壓模式:輸入電壓變動實驗測試 122
7-2-3降壓模式:Duty干擾實驗測試 124
7-2-4降壓模式:負載變動實驗測試 126
7-2-5降壓模式:電感變動實驗測試 128
7-2-6降壓模式:電容變動實驗測試 130
7-3 升壓模式實驗 133
7-3-1升壓模式:基本穩定實驗測試 134
7-3-2升壓模式:輸入電壓變動實驗測試 136
7-3-3升壓模式:Duty干擾實驗測試 138
7-3-4升壓模式:負載變動實驗測試 140
7-3-5升壓模式:電感變動實驗測試 142
7-3-6升壓模式:電容變動實驗測試 145
7-4 充電實測 148
7-4-1充電實測:基本穩定測試 148
7-4-2充電實測:電壓變動測試 149
7-4-3充電實測:Duty干擾測試 150
7-4-4充電實測:負載變動測試 152
7-4-5充電實測:電感變動測試 153
7-4-6充電實測:電容變動測試 155
7-4-6充電實測 156
7-5 放電實測 157
7-5-1放電實測:基本穩定測試 157
7-5-2放電實測:Duty干擾測試 159
7-5-3放電實測:負載變動測試 160
7-5-4放電實測:電感變動測試 161
7-5-5放電實測:電容變動測試 163
7-5-6放電實測 165
7-6 晶片運算時間實測 166
7-7 功率實測 167
第八章 結論與未來研究方向 168
8-1 結論 168
8-2 未來研究方向 168
參考文獻 169
附錄 174
附錄一 174
附錄二 177
附錄三 179
附錄四 182

[1]國際能源署,取自:
http://www.iea.org/newsroom/news/2016/november/world-energy-outlook-
2016.html
[2]台灣電力公司,取自:
http://www.taipower.com.tw/content/new_info/new_info-b36-2.aspx
[3]D. Sha, J. Zhang, X. Wang and W. Yuan, “Dynamic response improvements of parallel-connected bidirectional DC–DC converters for electrical drive powered by low-voltage battery employing optimized feedforward control,” IEEE Trans. Power Electronics, vol. 32, no. 10, pp. 7783-7794, 2017.
[4]V. Karthikeyan and R. Gupta, “Multiple-input configuration of isolated bidirectional DC-DC converter for power flow control in combinational battery storage,” IEEE Trans. Industrial Informatics, vol. PP, no. 99, pp. 1-1, 2017.
[5]T. J. Liang, H. H. Liang, S. M. Chen, J. F. Chen and L. S. Yang, “Analysis, design, and implementation of a bidirectional double-boost DC–DC converter,” IEEE Trans. Industry Applications, vol. 50, no. 6, pp. 3955-3962, 2014.
[6]J. W. Yang and H. L. Do, “Soft-switching bidirectional DC-DC converter using a lossless active snubber,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 61, no. 5, pp. 1588-1596, 2014.
[7]H. S. Son, J. K. Kim, J. B. Lee, S. S. Moon, J. H. Park and S. H. Lee, “ A new buck-boost converter with low voltage stress and reduced conducting components ,” IEEE Trans. Industrial Electronics, vol. PP, no. 99, pp. 1-1, 2017.
[8]T. F. Wu, C. H. Chang and Y. K. Chen, “A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications,” IEEE Trans. Industrial Electronics, vol. 47, no. 2, pp. 287-296, 2000.
[9]C. S. Chiu and Y. L. Ouyang, “Robust maximum power tracking control of uncertain photovoltaic systems: A unified T-S fuzzy model-based approach,” IEEE Trans. Control Systems Technology, vol. 19, no. 6, pp. 1516-1526, 2011.
[10]S. Zhang, X. Zhao and J. Zhang, “Stability and stabilization of discrete T-S fuzzy time-delay system based on maximal overlapped-rules group,” in Proc. Systems Engineering and Electronics, 2016, vol. 27, no. 1, pp. 201-210.
[11]H. Tang, K. P. Zhang and H. E. Liu, “Online regulation of high speed train trajectory control based on T-S fuzzy bilinear model,” IEEE Trans. Intelligent Transportation Systems, vol.17, no. 6, pp.1496-1508, 2016.
[12]Y. H. Chang, W. S. Chan and C. W. Chang, “T-S fuzzy model-based adaptive dynamic surface control for ball and beam system,” IEEE Trans. Industrial Electronics, vol.60, no. 6, pp. 2251-2263, 2013.
[13]K. Y. Lian, J. J. Liou and C. Y. Huang, “LMI-based integral fuzzy control of DC-DC converters,” IEEE Trans. Fuzzy Systems, vol. 14, no. 1, pp. 71-80, 2006.
[14]H. K. Lam, T. H. Lee, F. H. F. Leung and P. K. S. Tam, “Fuzzy control of DC-DC switching converters: stability and robustness analysis,” in Proc. IEEE IECON, 2001, pp. 899-902.
[15]H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET Journal of Control Theory & Applications, vol. 3, no. 8, pp. 1093-1106, 2009.
[16]K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems”, IEEE Trans. Fuzzy Systems, vol.17, no.4, pp.911-922, Aug. 2009.
[17]K. Tanaka, H. Ohtake and H. O. Wang, “Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach”, IEEE. Trans. Syst., Man, vol. 39, no. 2, 2009.
[18]H. K. Lam, L. D. Seneviratne and X. Ban, “Fuzzy control of non-linear systems using parameter-dependent polynomial fuzzy model,” IET Control Theory & Applications, pp. 1645-1653, 2012.
[19]H. K. Lam, M. Narimani, H. Li and H. Liu, “Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial lyapunov function,” IEEE Trans. Fuzzy Systems, pp. 800-813, 2013.
[20]H. K. Lam and J. C. Lo, “Output regulation of polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, vol. 21, no. 2, pp. 262-274, 2013.
[21]K. Tanaka, H. Ohtake, T. Seo, M. Tanaka and H. O. Wang, “Polynomial fuzzy observer designs: A sum-of-squares approach,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 5, pp. 1330-1342, Oct. 2012.
[22]H. K. Lam, “Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach, ” IEEE Trans. Computationak Intelligence Society, vol. 23, no. 6, pp. 2067-2079, 2015.
[23]H. K. Lam and H. Li, “Output-feedback tracking control for polynomial fuzzy-model-based control systems,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5830-5840, 2013.
[24]S. J. Yoo, “Delay-independent fault detection and accommodation for non-linear strict-feedback systems with unknown time-varying delays,” IET Control Theory & Applications, vol. 9, no. 2, pp. 293-299, 2015.
[25]E. Devance and I. Lestas, “Delay-independent asymptotic stability in monotone systems,” IEEE Trans. Automatic Control, vol. 61, no. 9, pp. 2625-2631, 2016.
[26]X. Li and C. E. de Souza, “Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach,” IEEE Trans. Automatic Control, vol. 42, no. 8, pp. 1144-1148, 1997.
[27]Papachristodoulou, M. M. Peet and S. Lall, ”Analysis of polynomial systems with time delays via the sum of squares decomposition,” IEEE Trans. Automatic Control, vol. 54, no. 5, pp. 1058-1064, 2009.
[28]Q. Gao, G. Feng, Z. Xi, Y. Wang and J. Qiu, “A new design of robust H∞ sliding mode control for uncertain stochastic T–S fuzzy time-delay systems,” IEEE Trans. Cybernetics, vol. 44, no. 9, pp. 1556-1566, 2014.
[29]W. Li and W. Wang, “Guaranteed cost control for polynomial fuzzy time delay systems by sum-of-squares approach,” in Proc. IEEE WCICA, 2012, pp. 1806-1811.
[30]F. Siala, H. Gassara, A. E. Hajjaji and M. Chaabane, “Robust stability of polynomial fuzzy systems with time-delay,” in Proc. IEEE STA, 2014, pp. 758-764.
[31]F. Siala, H. Gassara, A. E. Hajjaji and M. Chaabane, “Stability analysis and stabilization of polynomial fuzzy systems with time-delay via a sum of squares (SOS) approach,” in Proc. IEEE ACC, 2015, pp. 5706-5711.
[32]M. Biglarbegian, W. W. Melek and J. M. Mendel,“On the stability of interval type-2 TSK fuzzy logic control systems,” IEEE Trans. System, Man, Cybern., vol. 40, no. 4, pp. 798-818, 2010.
[33]M. Biglarbegian, W. Melek and J. M. Mendel, “Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments,” IEEE Trans. Ind. Electron, vol. 58, no. 4, pp. 1371-1384, 2011.
[34]H. K. Lam and L. D. Seneviratne, “LMI-based stability conditions for interval type-2 fuzzy-model-based control systems,” in Proc. IEEE Fuzzy Systems., 2011, pp. 298-303.

[35]B. Xiao, H. K. Lam and H. Li, ” Stabilization of interval type-2 polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, vol. 25, no. 1, pp. 205-217, 2017.
[36]H. Li, J. Wang, L. Wu, H. K. Lam and Y. Gao, ” Optimal guaranteed cost sliding mode control of interval type-2 fuzzy time-delay systems,” IEEE Trans. Fuzzy Systems, vol. PP, no. 99, pp. 1-1, 2017.
[37]H. K. Lam, L. Wu and J. Lam, “Two-step stability analysis for general polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, vol. 23, no. 3, pp. 511-524, 2015.
[38]S. Prajna, A. Papachristodoulou and P. A. Parrilo, “Introducing SOSTOOLS: a general purpose sum of squares programming solver,” in Proc. IEEE CDC, 2002, pp. 741-746.
[39]B. W. Huang, H∞ control of a bidirectional converter with parametric, Master Thesis, Department of Electrical Engineering, National Chung Cheng University, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top