跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇紀瑋
研究生(外文):Eric C. Su
論文名稱:現場演唱會之最適訂價研究
論文名稱(外文):An Empirical Study of Ticket Pricing at Live Concerts
指導教授:郭佳瑋郭佳瑋引用關係
指導教授(外文):Chia-Wei Kuo
口試委員:楊朝龍黃奎隆
口試日期:2012-06-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:企業管理碩士專班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:94
中文關鍵詞:購買意願演唱會票價週邊商品明星光環品牌迴歸模型收益管理
外文關鍵詞:Reservation Price (Willingness-to-Pay)Concert Ticket PricingMerchandisingCelebrity BrandingMultiple RegressionRevenue Management
相關次數:
  • 被引用被引用:6
  • 點閱點閱:762
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在以往的研究中,演唱會的票價與週邊商品這兩項相關互補的產品類總是在研究中被分開來探討。在本篇的研究中,主要是以實證研究(Empirical Study)的方式使用問卷來蒐集資料,來推導出一個可以結合演唱會票價的購買意願與週邊商品的迴歸模型(Regression Model)。由於演唱會最熱門跟最常出現的週邊商品為螢光棒以及T-SHIRT,本研究針對這兩項周邊商品在加上明星光環時的購買意願進行調查。在檢查完迴歸模型適用後,本研究探討的相關係數包含週邊商品加了明星光環後的訂價差異,參加演唱會的民眾對於螢光棒和T-SHIRT的喜愛程度,以及民眾印象中對於其他人在週邊商品上所進行的花費數字。最後,本研究以迴歸模型來推導一場模擬實際現實中演唱會的市場需求(Demand Function),來進行收益管理(Revenue Management)與訂價的策略。此研究發現,加了明星光環的T-SHIRT比加了明星光環的螢光棒帶來更高的票價購買意願。此外,使用迴歸模型的收益訂價策略的收入會增加51.19%。

Traditionally, concert ticket sales and merchandise sales which are complementary to one other have been examined separately. The following paper conducts an empirical study to develop a model that links the relationship between a consumer’s merchandise preferences and its influence on the individual’s ticket reservation price. Two of the most prevalent concert merchandise items, the Glowstick and the T-Shirt, are selected to represent this category. The merchandise variables investigated include the consumer’s personal interest in the merchandise item, the difference in the reservation price for a merchandise item due to celebrity stardom, and the individual’s perception of the merchandise spending of an average concert attendee. Regression is used to explain the link between ticket reservation price model and these merchandise variables. It is discovered that there is a stronger brand influence to Celebrity T-Shirts when compared to Celebrity Glowsticks on Ticket Reservation Prices. Using the model to forecast a larger population demand through ticket reservation prices, revenue management is applied to a live ticket concert scenario to determine the optimal ticket prices. Compared to the traditional scenario of ticket pricing, the revenue management scheme incorporating the merchandise regression model shows a 51.19% improvement in revenue.

Table of Contents
Master Thesis Certification i
Acknowledgement and Dedication ii
Chinese Abstract iii
English Abstract iv
Table of Contents v
List of Figures vii
List of Tables viii

Chapter 1: Introduction 1
1.1 Background 2
1.2 Statement of Problem 4
1.3 Research Process 11

Chapter 2: Literature Review 13
2.1 The Supply Side: Vertical Organization of Entertainment Industry 13
2.2 The Demand Side: Concert attendees vs. Arbitragers, Free Riding Merchants 14
2.3 Related Works on Ticket and Merchandise Pricing 15

Chapter 3: The Model 22
3.1 Benefits of Regression Analysis 22
3.2 Formulating the Model 24
3.3 The Model 26
3.4 Explanation and Calculation of Model Variables 26

Chapter 4: Results and Analysis 34
4.1 Correlation Matrix and Residuals Analysis 35
4.2 Multiple Regressions 44
4.3 Finalized Model Equation for Ticket Reservation Price 45
4.4 Interpreting the Model Coefficients 45
4.5 Revenue Management on Ticket Pricing 47
4.6 Multiple Regressions II (Stepwise Regression) 56
4.7 Revenue Management on Ticket Pricing II (Stepwise Regression) 58

Chapter 5: Conclusions and Recommendations 65
5.1 Conclusions 65
5.2 Recommendations on Future Research Direction 68
References 71
Appendix A-Calculated Data from Survey Responses 73
Appendix B-Design Survey for Concert (Chinese Version) 80
Appendix C-Design Survey for Concert (English Version) 83
Appendix D-Design Survey Raw Data 86

List of Figures
Figure 1: Overview Structure of Research Paper 2
Figure 2: The Decline of Record Sales in Taiwan (1997-2008) 6
Figure 3: Concert Organization of Zones 27
Figure 4: Survey Design: The Six Pricing Scenarios 28
Figure 5: Scatter Plot of RTICKETSi as a function of RGCELBi 35
Figure 6: Scatter Plot of RTICKETSi as a function of IGLOWSTICKi 36
Figure 7: Scatter Plot of RTICKETSi as a function of RTCELBi 36
Figure 8: Scatter Plot of RTICKETSi as a function of IT-SHIRTi 36
Figure 9: Scatter Plot of RTICKETSi as a function of RPEMSi 37
Figure 10: Combined Scatter Plot 37
Figure 11: Residuals over Time 38
Figure 12: Scatter Plot of RGCELBi Residuals 39
Figure 13: Scatter Plot of IGLOWSTICKi Residuals 39
Figure 14: Scatter Plot of RTCELBi Residuals 39
Figure 15: Scatter Plot of IT-SHIRTi Residuals 40
Figure 16: Scatter Plot of RPEMSi Residuals 40
Figure 17: Predicted Values vs. Residuals 41
Figure 18: Histogram of Standardized Residuals 42
Figure 19: VIF Calculation Formula 42
Figure 20: Ticket Price-Demand Function for Zone 1 49
Figure 21: Ticket Price-Demand Function for Zone 2 50
Figure 22: Ticket Price-Demand Function for Zone 3 50
Figure 23: Ticket Price-Demand Function for Zone 4 51
Figure 24: Ticket Price-Demand Function for Zone 5 51
Figure 25: Ticket Price-Demand Function for Zone 6 52
Figure 26: Ticket Price-Demand Function for Zone 7 52
Figure 27: Ticket Price-Demand Function for Zone 1 (Stepwise Regression) 59
Figure 28: Ticket Price-Demand Function for Zone 2 (Stepwise Regression) 59
Figure 29: Ticket Price-Demand Function for Zone 3 (Stepwise Regression) 60
Figure 30: Ticket Price-Demand Function for Zone 4 (Stepwise Regression) 60
Figure 31: Ticket Price-Demand Function for Zone 5 (Stepwise Regression) 61
Figure 32: Ticket Price-Demand Function for Zone 6 (Stepwise Regression) 61
Figure 33: Ticket Price-Demand Function for Zone 7 (Stepwise Regression) 62

List of Tables
Table 1: The Decline of Record Sales in Taiwan (1997-2008) 6
Table 2: Income Contribution of Live Concerts of Taiwanese Artists in 2008 7
Table 3: Taiwan’s Record Companies 14
Table 4: Model Variables 26
Table 5: Ticket Prices based on Zones for Scenarios 1~6 28
Table 6: Example: Determination of Ticket Reservation Price 29
Table 7: Determination of Glowstick Reservation Prices in Lower/Upper Bounds 30
Table 8: Example: Determination of Glowstick Branding Factor 31
Table 9: Determination of T-Shirt Reservation Prices in Lower/Upper Bounds 31
Table 10: Mixed Bundling Options 32
Table 11: Personal Preference Factor on Reservation Price 32
Table 12: Personal Preference/Interest Measurement Evaluation 33
Table 13: Correlation Matrix 35
Table 14: Durbin-Watson Table 41
Table 15: VIF Calculation on Multicollinearity 43
Table 16: Regression Statistics 44
Table 17: Sorted Reservation Price Data by Model Predictions 48
Table 18: Customer Demand by Zone 49
Table 19: Optimal Prices for Revenue Management under Model 53
Table 20: Revenue earned under Prices for Mayday DNA Live 2009 World Tour 54
Table 21: A Comparison of Ticket Prices for both Scenarios 55
Table 22: A Comparison of Revenue Earnings 56
Table 23: Regression Statistics II (Stepwise Regression) 57
Table 24: Customer Demand by Zone (Stepwise Regression) 58
Table 25: Optimal Prices for Revenue Management (Stepwise Regression) 63
Table 26: A Comparison of Ticket Prices of Original vs. Stepwise Regression 63
Table 27: A Comparison of Revenue Earnings of Original vs. Stepwise Regression 64


References

2009 Publication Annual (Taiwan), Industry Foundation in Taiwan (RIT)

“Apple surpasses Wal-Mart as No. 1 music retailer in U.S.”
http://www.cbc.ca/news/technology/story/2008/04/04/tech-itunes-numberone.html

Brennan, M. and Webster, B. (2011). “Why Concert Promoters Matter”, Scottish Music
Review, vol. 2, no. 1, pp. 1-25.

Busch, L. and Curry, P. (2004). “Rock Concert Pricing and Anti-Scalping Laws:
Selling to an Input”, pp. 1-9

Chase, C. (2007). “How the Band Protects Its Brand: The Use of Trademarks to
Protect and Promote the Musical Artist”, pp. 1-12

Connolly, M. and Krueger, A. (2006). “Rockonomics: The Economics of
Popular Music,” in Handbook of the Economics of Art and Culture, Vol. 1,
pp. 667-719

Diamond, T. (1982). “Ticket Scalping : A New Look at an Old Problem.” University of
Miami Law Review 37 : pp. 71-92.

Frith, S. (2007). “Live Music Matters”, Scottish Music Review, vol. 1,
no. 1 (2007), pp. 1-17.

Happel, S. and Jennings, M. (1995). “The Folly of Anti-Scalping Laws.”
Cato Journal 15(1) : pp. 65-80.

Happel, S. and Jennings, M. (1995). “Herd them together and Scalp them.”
The Wall Street Journal (February 23) : Section A pp.14 column 4.

Huntington, P. (1993). “Ticket Pricing Policy and Box Office Revenue.”
Journal of Cultural Economics 17(1) : pp. 71-87.

Krueger, A. (2005): ‘The Economics of Real Superstars: The Market for
Rock Concerts in the Material World’, Journal of Labor Economics, vol. 23, no. 1, pp. 1-30.

Louvain Economic Review (2000), “An economic guide to ticket pricing
in the entertainment industry, Louvain Economic Review 66(1), pp.1-26

Pagliero, M. (2011). “The Pricing of Art and the Art of Pricing: Pricing Styles in the
Concert Industry”, pp. 1-97

Phillips, R. (2005). Pricing and Revenue Optimization. Stanford Business Books.
pp.1-368

Prynn, J. (2008). “Festival explosion turns live music into £1.9bn big business”,
Evening Standard, 10 September. http://www.thisislondon.co.uk/standard/article-23553561-details/Festival+explosion+turns+live+music+into+1.9bn+big+business/article.do

Rosen, S. (1974). “Hedonic Prices and Implicit Markets : Product Differentiation
in Pure Competition.” Journal of Political Economy 82(1). pp. 35-55.

Rosen, S. and Rosenfield, A. (1997). “Ticket Pricing.” Journal of Law and
Economics 40(2) : pp. 351-76.

Tirole, J. (1988). The Theory of Industrial Organization. Cambridge, Mass.
The MIT Press.

Williams, A. (1994). “Do Anti-Ticket Scalping Laws Make a Difference?”
Managerial and Decision Economics 15(5) (September-October) : pp. 503-09.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 虛榮特性、價格知覺與品牌購買意願關係之研究-以時尚服飾業為例
2. 價格、品牌、商店等外部訊息對大學生消費者產品評估的影響分析
3. 品牌經營實作模式之研究-以品牌經營的觀點探討企業「促銷贈品」、「禮品」及「週邊商品」於整合行銷傳播之運用
4. 臉部護膚乳液產品品牌權益與顧客購買意願關係之研究-以台北市大學商管學院女性學生為例
5. 品牌、價格與來源國之資訊不一致呈現次序對消費者困惑程度、購買意願及決策態度之影響─以Gore-tex防水透濕外套為例
6. 品牌權益對消費者購買開架式保養品意願影響之研究-以台北市大學商管學院女性學生為例
7. 大學生收看美國職棒大聯盟球賽動機與週邊商品購買意願之研究
8. 不同消費族群對麵包品牌及陳列方式認知差異之研究
9. 7-ELEVEN商店促銷活動對消費者知覺價值及購買意願之研究
10. 結合時尚品牌對消費者購買意願及願付價格的影響-產品類別的調節效果
11. OBM產品的知覺價格對購買意願影響之研究—以原廠品牌知覺為干擾變數。
12. 品牌外顯性對消費者態度之影響-以品牌強度及產品類別為干擾變數
13. 表演品質、商品價值對週邊商品購買意願之影響-以表演藝術產業為例
14. 消費者對創新產品知覺及購買意願之關聯性研究-以電腦周邊儲存產品外接盒為例
15. 兩岸數位相機產品種類契合度及消費者
 
無相關期刊