跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:皮先覺
研究生(外文):bruce pi
論文名稱:應用超臨界瞬間膨脹法於有機發光二極體成膜技術之研究
論文名稱(外文):Studies of Rapid Expansion of Supercritical Solution of OLED membrane-forming technology
指導教授:林昭任林昭任引用關係
指導教授(外文):Tsao-Jen Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:114
中文關鍵詞:超臨界流體有機發光二極體成膜技術
外文關鍵詞:Rapid Expansion of Supercritical SolutionOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:855
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討利用超臨界瞬間膨脹法(rapid expansion of supercritical solution, RESS)於有機發光二極體(organic light emitting diode, OLED)材料Alq3(tri 8-hydroxyquinoline aluminum)的成膜機制。主要利用超臨界CO2 (SCCO2)從高壓降至常壓的過程中瞬間揮發的特色,造成溶質瞬間以過飽和析出,其產生的粒子高速撞擊基材表面而成膜。SCCO2 於30.6 MPa、35 ℃下擁有較佳的溶解度,可析出較小粒子而得到粗糙度15.8 nm的薄膜;接著利用電漿清洗以及基板加溫來改善粒子的附著性,降低薄膜粗糙度至6 nm。此外,輔以適當的共溶劑Ethyl alcohol(mass of Alq3/mass of Ethyl alcohol=30)增加SCCO2對Alq3的溶解量,因此只需要原先60%的SCCO2使用量就可以得到相同70 nm厚度的Alq3薄膜,並且使薄膜表面結構產生再聚集而降低粗糙度達3.2 nm。對OLED元件的電性量測,以蒸鍍方式加入NPB及LiF增加電子、電洞的躍遷,得到的OLED元件(ITO/ NPB (35 nm)/Alq3(70 nm)/LiF(0.5 nm)/Al(100 nm)),電壓6V下產生了啟動電壓,並在10V下擁有300 mA/cm2的電流密度,達到了OLED元件的需求。
This research investigated the film deposition mechanism of organic material Alq3 through rapid expansion of supercritical solution (RESS) to organic light emitting diode (OLED) application. The depressurization of supercritical carbon dioxide (SCCO2) into ambient environment produced a rapid supersaturated precipitation. The high speed particles imprinted the substrate and aggregated to form a membrane. It was found that SCCO2 at 30.6MPa and 35℃ has higher solubility to obtain finer particles and to form a thin film with 15.8 nm roughness. Employing plasma and heating substrate to improve adherence with Alq3, the thin film became smoother with 6 nm roughness. Moreover, with a suitable addition of co-solvent Ethyl alcohol (mass of Alq3/mass of Ethyl alcohol= 30) to increase the solubility of Alq3, it can save up to 40% of SCCO2 producing 70 nm thickness of Alq3 thin film compared to the original method. Besides, the surface structure of the produced thin film was re-agglomerated to reduce roughness to 3.2 nm. For the OLED electrical test, layers of NPB and LiF were generated by evaporator to improve the electron and hold transition ability. The OLED device (ITO/ NPB (35 nm)/Alq3 (70 nm)/LiF (0.5nm)/Al(100 nm)) has turn on voltage at 6V and 300 mA/cm2 current density at 10V, which have meet the requirements of the OLED device.
中文摘要………………………………………………………………………I
Abstract………………………………...……………………………………II
目錄….……………………………………………………………...……….. III
圖目錄…………………………………………...…………………...……...VI
表目錄………………………………………………………….…...………X

第一章 緒論..……..…………………………………………………...………..1
第二章 文獻回顧及分析介紹….....…...…………...…………………………3
2-1 OLED…..…..…..…..…..…..…............................………..….3
2-1-1 OLED結構及發光機制….…….……………………………..…...3
2-2光電有機薄膜的成長機制及製作…..…………...…………...……….6
2-2-1 利用超臨界流體製作有機層………………………………..…...9
2-3 RESS 歷史與應用.……...…………………………………………….14
2-4 RESS的成膜機制..…….………………………………………….18
2-5 RESS的操作條件..…….………………………………………….22
2-5-1 萃取槽之操作條件............…..……………………………..…...24
2-5-2 管件之操作條件..............…..…………………….………..…...27
2-5-3 噴嘴之操作條件..............…..…………………….………..…...28
2-5-4 膨脹槽之操作條件..........…..…………………….………..…...31
2-5-5 基材之操作條件..............…..…………………….………..…...32
2-6 研究動機與目的….......…….………………………………………….34

第三章 實驗設備及實驗程序…………………………..…………………...35
3-1實驗藥品…………………………………………………….………....35
3-2實驗儀器規格…………………………………………….……………35
3-3實驗流程………………………………….……………………….....37
3-3-1定義陽極……………………….…………..…………..……….38
3-3-2玻璃清洗……………………….…………..…………..……….38
3-3-3以RESS製作有機膜.……………………..…………..……….39
3-3-4定義陰極……………………….…………..…………..……….48
3-3-5量測…………………………….…………..…………..……….49

第四章 結果與討論….……………..…………………….………...............51
4-1 SCCO2對Alq3特性分析……..……..……………..……..…….…51
4-2薄膜成長機制的探討……………………..………………………….53
4-3薄膜形貌的探討…………………………..………………………….57
4-4萃取槽壓力溫度對薄膜的影響…………..………………………….61

4-4-1萃取槽壓力對薄膜的影響……………………………….…….61
4-4-2萃取槽溫度對薄膜的影響…...…………………………………68
4-5 增加萃取槽噴出量對薄膜的影響…….……………………………...72
4-6 利用基板加熱及電漿處理…….……..……………………………...77
4-7 萃取槽共溶劑對薄膜的影響….……..……………………………...82
4-8 綜合較佳條件下的薄膜…..….……....……………………………...88
4-9 實驗參數對薄膜電性的影響.….……....……………………………...90

第五章 結論與未來展望….......……………..………………………..…97
5-1結論..……………………………………………………...….………97
5-2 未來展望...…………………………………………….……..…..….…98

參考文獻…………………………………………………………….....……..100

附錄一…………………………………………………………….....……..…110
附錄二…………………………………………………………….....……..…114
柯賢文,“表面與薄膜處理技術”,全華出版,2005

Berends, E. M., O. S. L. Bruinsma, G. M. van Rosmalen, “Nucleation and growth of fine crystals from supercritical carbon dioxide”, Journal of Crystal Growth, 1993,128, 50–56

Carbonell, R. G., Y. Chernyak, F. Henon, R. B. Harris, R. D. Gould, R. K. Franklin, J. R. Edward, J. M. DeSimone, “Formation of Perfluoropolyether Coatings by the Rapid Expansion of Supercritical Solutions (RESS) Process. Part 1: Experimental Results”, Ind. Eng. Chem. Res., 2001, 40, 6118–6126

Carbonell R. G., R. K. Franklin, J. R. Edwards, Y. Chernyak, R. D. Gould, F. Henon,“Formation of Perfluoropolyether Coatings by the Rapid Expansion of Supercritical Solutions (RESS) Process. Part 2: Numerical Modeling”, Ind. Eng. Chem. Res., 2001, 40, 6127-6139

Chung, J. M., Y. Z. Luo, Z. A. Jian, M. C. Kuo, C. S. Yang, W. C. Chou, K. C. Chiu, “Effects of Substrate Temperature on the Properties of ALq3 Amorphous Layers Prepared by Vacuum Deposition”, Japanese Journal of Applied Physics, 2004, 43, 1631-1632


Cunningham, S. , F. Stern, “Calculation of the integrated sticking coefficient from measurement of the force exerted on substrate during the deposition of a thin film an atomic beam”, Journal of Physics D: Applied Physics, 1981, 14, 1847-1851

David, M. D. ,J. N. Seiber, “Comparison of extraction techniques, including supercritical fluid, high-pressure solvent, and Soxhlet, for organophosphorus hydraulic fluids from soil”, Analytical Chemistry, 1996,68 , 3038-3044

DeSimone, J. M., E. Buhler, A. V. Dobrynin, M. Rubinstein, “Light-Scattering Study of Diblock Copolymers in Supercritical Carbon Dioxide: CO2 Density-Induced Micellization Transition”, Macromolecules, 1998, 31, 7347-7355

Debenedetti, P. G., L. M. Russell, M. Weber, “Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions”, Journal of Supercritical Fluids, 2002, 23, 65–80

Domingo, C., E. M. Berends, G. M. van Rosmalen, “Precipitation of ultrafine benzoic acid by expansion of a supercritical carbon dioxide solution through a porous plate nozzle”, Journal of crystal Growth, 1996, 166, 989-995


Domingo, C., P. Subra, P. Berroy, J. Saurina, “Influence of expansion conditions on the characteristics of cholesterol crystals analyzed by statistical design”, Journal of Supercritical Fluids, 2004 31,313-322

Friedlander, S. K., “Gas-to-particle conversion in photochemical smog aerosol growth laws and mechanisms for organics”, Atmospheric Environment,1977, 11, 157-168

Friedlander, S. K., M. K. Wu, “Linear rate law for the decay of the excess surface area of a coalescing solid
Particle”, Phys. Rev, 1994, 49, 3622-3624.

Fulton, J. L. , G. S. Deverman, C. R. Yonker, J. W. Grate, J. B. Young, J. B. McClain, “Thin fluoropolymer films and nanoparticle coatings from the rapid expansion of supercritical carbon dioxide solutions with electrostatic collection”, Polymer, 2003, 44,3627-3632

Fulton, J. L., G. S. Deverman, C. R. Yonker, J. W. Grate, J. D. Young, J. B. McClain, “Thin fluoropolymer films and nanoparticle coatings from the rapid expansion of supercritical carbon dioxide solutions with electrostatic collection”, Polymer, 2006, 44, 3627–3632

Gupta, R. B., R. Thakur, “Rapid Expansion of Supercritical Solutions with Solid Cosolvent (RESS-SC) Process: Formation of Griseofulvin Nanoparticles”, Ind. Eng. Chem. Res., 2005, 44, 7380-7387



Gupta, R. B., R. Thakur, “Rapid expansion of supercritical solution with solid cosolvent (RESS-SC)process: Formation of 2-aminobenzoic acid nanoparticle”, Journal of Supercritical Fluids, 2006, 37, 307–315

Helfgen, B., M. Türk, P. Hils, R. Lietzow, K. Schaber, “Micronization of Pharmaceutical Substances by Rapid Expansion of Supercritical Solutions (RESS): Experiments and Modeling”, Part. Syst. Charact., 2002, 19, 327–335

Huang, Z., G. B. Sun, Y. C. Chiew, S. Kawi, “Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions(RESS)”, Power Technology, 2005, 160, 127–134

Huang, J., T. Moriyoshi, “Fabrication of fine powders by RESS with a clearance nozzle”, Journal of Supercritical Fluids, 2006, 37, 292-297

Kiran, E., S. D. Yeo, “Formation of polymer particles with supercritical fluids: A review”, Journal of Supercritical Fluids, 2005, 34, 287-308

Kingery, W. D., H. K. Bowen, D. R. Uhlmann, “Left bracket Opportunities and Needs for Technology and Science of Ceramics right bracket ”, Ceramurgia, 1976, 7, 187-193

Kodak company,“Appartus and method color turning a light emitting display”,2004,US Patent 20040265478


Krause, H., H. Kröber, U. Teipel, “Manufacture of Submicron Particles via Expansion of Supercritical Fluids”, Chem. Eng. Technol., 2000, 23, 9

Ksibi, H., A. B. Moussa, M. Baccar, “Powder Structure Transition under the Recrystallization Conditions in the RESS Process”, Chem. Eng. technol., 2006, 29, 868-874

Kopcak, U., R. S. Mohamed, “Caffeine solubility in supercritical carbon dioxide/co-solvent mixtures”, Journal of Supercritical Fluids, 2005, 34, 209-214

Lehtinen, K. E. J., R. S. Windeler, S. K. Friedlander, “Prediction of nanoparticle size and the onset of dendrite formation using the method of characteristic times”, J. Aerosol Sci. ,1996, 27, 883–896

Okabayashi, Y., T. Mitarai, S. Yamazaki, R. Matsuyama, K. Kanai, Y. Ouchi, K. Seki, “Preparation and characterization of Rhodamine B and Alq3 thin films deposited by solution jet beam method”, Applied Surface Science, 2005, 244, 217-220

Li, J. R., Miguel, Paiva, Alexandre, Matos, A. Henrique , D. Azevedo, G. Edmundo , “Modeling of the PGSS process by crystallization and atomization”, AIChE Journal, 2005, 51, 2343-2357



McHugh, M. A., V. J. Krukonis, “Supercritical Fluid Extraction: Principles and Practice”, Butterworth: Stoneham, MA, 1986.


Peppiatt, S. J., Sambles, J. R. (1975) “The melting of small particles”, Proc. R. Sot. Land., 1982,345, 387-349.

Pfeffer, R., Y. Wang, D. Wei, R. Dave, M. Sauceau, J. J. Letourneau, J. Fages, “Extraction and precipitation particle coating using supercritical CO2”, Power Technology, 2002, 127, 32 – 44

Reverchon, E., G. Donsì, “Salicylic Acid Solubilization in Supercritical CO2 and Its Micronization by RESS”, Journal of Supercritical Fluids, 1993, 6, 241–248

Reverchon, E., P. Pallado, “Hydrodynamic Modeling of the RESS Process ,” Journal of Supercritical Fluids, 1996, 9, 216–221

Smith, R. D., H. R. Udseth, E. K. Chess, “Rapid analysis using direct supercritical fluid injection-mass spectrometry”, Annual Conference on Mass Spectrometry and Allied Topics, 1983,524-525

Smith, R. D., D. W. Matson, J. L. Fulton, R. C. Petersen, “Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers”, Ind. Eng. Chem. Res., 1987, 26, 2298-2306



Sprengard, R., K. Bonrad, T. K. Daubler, T. Frank, V. Hagemann, I. Kohler, J. Pommerehne, C. Ottermann, F. Voges, B. Vingerling, “OLED devices for signage applications - A review of recent advances and remaining challenges ”, Organic Light-Emitting Materials and Devices VIII, 2004, 173-183

Srinophakun, T., P. Hirunsit, Z. Huang, M. Charoenchaitrakool, S.
Kawi, “Particle formation of ibupercritical–supercritical CO2 system from rapid expansion of supercritical solutions (RESS): A mathematical model”, Power Technology, 2005, 154, 83–94

Sun, Y. P., H. W. Rollins, “Preparation of polymer-protected semiconductor nanoparticles through thrrapansion of supercritical fluid solution”, Chemical Physics Letters, 1998, 288, 585–588

Sun, Y. P., R. Guduru, F. Lin, T. Whiteside, “Preparation of Nanoscale Semiconductors through the Rapid Expansion of Supercritical Solution (RESS) into Liquid Solution”, Ind. Eng. Chem. Res., 2000, 39, 4663-4669

Sun, Y. P., P. Pathak, M. J. Meziani, T. Desai, “Nanosizing Drug Particles in Supercritical Fluid Processing”, Published on Web, 2004, 08/12/2004



Sun, Y. Pi., M. J. Meziani, P. Pathak, R. Hurezeanu, M. C. Thies, R. M. Enick, “Supercritical-Fluid Processing Technique for Nanoscale Polymer Particles”, Angew. Chem. Int. Ed., 2004, 43, 704 –707

Sun, Y. P., M. J. Meziani, P. Pathak, F. Beacham, L. F. Allard, “Nanoparticle formation in rapid expansion of water-in-supercritical carbon dioxide microemulsion into liquid solution”, Journal of Supercritical Fluids, 2005, 34, 91–97

Tang C. W., S. A. Vanslyke, “Organic Eletroluminescent diode”, Appl. Phys. Lett., 1987, 51, 912-915

Tepper, G., N. Levit, “Polymer Deposition from Supercritical Solutions for Sensing Applications”, Ind. Eng. Chem. Res., 2000, 39, 4445-4449

Tepper, G., N. Levit, D. Pestov, “High surface area polymer coatings for SAW-based chemical sensor applications”, Sensors and Actuators B, 2002, 82, 241-249

Tepper, G., S. Sarkar, N. Levit, “Deposition of polymer coatings onto SAW resonators using AC electrospray”, Sensors and Actuators B, 2006, 114, 756–761

Thies, M. C., A. Blasig, C. Shi, R. M. Enick, “Effect of Concentration and Degree of Saturation on RESS of a CO2-Soluble Fluoropolymer”, Ind. Eng. Chem. Res., 2002, 41, 4976-4983
Thies, M. C., A. Sane, “The Formation of Fluorinated Tetraphenylporphyrin Nanoparticles via Rapid Expansion Processes: RESS vs RESOLV”, J. Phys. Chem. B, 2005, 109, 19688-19695

Thies, M. C., A. Sane, “Effect of material properties and processing conditions onRESS of poly(l-lactide)”, Journal of Supercritical Fluids, 2005, 40, 134–143

Tsutsumi, A., M. Ikeda, W. Chen, J. Iwatsuki, “A nano-coating process by the rapid expansion of supercritical suspensions in impinging-stream reactors”, Power Technology, 2003, 138, 211 – 215

Turk, M., “Formation of small organic particles by RESS: experimental and theoretical investigations”, Journal of Supercritical Fluids, 1999, 15, 79–89

Turk, M., “Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions”, Journal of Supercritical Fluids, 2000, 18, 169–184

Turk, M., B. Helfgen, K. Schaber, “Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process)”, Journal of Supercritical Fluids, 2003, 26, 225–242



Wang, T. J., A. Tsutsumi, H. Hasegawa, T. Mineo, “Mechanism of particle coating granulation with RESS process in a fluidized bed”, Power Technology, 2001, 118, 229-235

Weber, M., M. C. Thies, “A simplified and generalized model for the rapid expansion of supercritical solutions”, Journal of Supercritical Fluids, 2007, 40, 402–419

Williams, L. L., “Removal of polymer coating with supercritical carbon dioxide”, dissertation, Colorado State University, 2001

Zhang, S. H., “Coating of magnesium powder by rapid expansion of supercritical solution method”, Trans. Nonferrous Met. Soc. China, 2002, 16, s285-s288

Zahn D.R.T., C. Himcinschi, M. Friedrich, A. Paraian, M. Heuken, “OVPD and Anwendung optischer Spektroskopiemethoden zur Wachstumskontrolle”, Vakuum in Forschung und Praxis , 2003,15, 312–314
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top