跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許家瑋
研究生(外文):Chia-Wei Hsu
論文名稱:Lomakin效應對液體平軸封動態係數之影響分析
論文名稱(外文):Influence of Lomakin Effects on the Dynamic Coefficients of Liquid Plain Seals
指導教授:楊大中楊大中引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:114
中文關鍵詞:軸封Lomakin效應幾何因素入口流失係數入口渦流動態係數
外文關鍵詞:sealLomakin effectgeometric effectinlet loss coefficientinlet preswirldynamic coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
流體旋轉機械中,當流體經過軸封時,轉軸兩側流場壓降不同(pressure drop),產生一徑向作用力(radial force)將轉子推回軸封中心位置,後人稱此現象為Lomakin效應。軸封之動態特性是會影響轉子系統的穩定性,提高系統的穩定性是轉子動力學分析上非常重要的問題。過去研究Lomakin效應對於動態係數影響的分析上,均著重在主勁度係數的影響,且影響Lomakin效應的各個因素也沒有完整的討論。本文特別針對各個因素作一系列討論,影響Lomakin效應的因素可以歸納為下列幾點:軸封幾何外形,軸封間隙與半徑比,軸封表面粗糙度,轉子偏心量,入口壓力流失係數,入口渦流效應,流體特性,如黏滯性、種類。本文利用CFD軟體Fluent來分析Lomakin效應以求得更精準的動態係數,並針對各個因素之影響作一詳細討論。

In fluid rotating machinery, dynamics of rotors is affected by Lomakin effects, which are the radially restoring forces caused by the difference of the pressure drops between the opposite sides of the rotor when the fluid flows through seals. The dynamic characteristics of seals can affect the stability of the rotor systems. Rotor Stability is always an important research issue in rotordynamics. In previous research, the influence of Lomakin effects on the dynamics coefficients of seals were not investigated inclusively. Influence of factors on the Lomakin effect are specially studied in this paper. The factors on Lomakin effects include ratio of seal length and shaft diameter, ratio of seal clearance to shaft radius, surface roughness, eccentricity of the rotor, inlet loss coefficients, inlet preswirl, and fluid properties, such as viscosity and variety. In this paper, the influence of factors on the Lomakin effects and the dynamic coefficients are examined by Fluent, a CFD software.

中文摘要--------------------------------vi
英文摘要--------------------------------vii
致謝------------------------------------viii
目錄------------------------------------x
圖目錄----------------------------------xiii
表目錄----------------------------------xxii
符號表----------------------------------xxiv
第一章 緒論-----------------------------1
1.1前言---------------------------------1
1.2文獻回顧-----------------------------1
1.2.1 bulk flow理論---------------------4
1.2.2 實驗法----------------------------5
1.2.3 CFD數值計算-----------------------5
1.3研究動機與目標-----------------------6
1.4本文大綱-----------------------------7
第二章 研究方法-------------------------10
2.1 理論方法----------------------------10
2.2 Fluent對軸封分析之流程--------------13
2.2.1 軸封之幾何外型與邊界條件設定------13
2.2.2 範例分析結果----------------------15
第三章 環境參數設定及結果驗證-----------25
第四章 幾何因素探討---------------------34
4.1軸封的幾何外形-----------------------34
4.2軸封間隙與半徑比---------------------35
4.3軸封壁面摩擦力-----------------------36
4.4轉子偏心量---------------------------37
4.5小結---------------------------------38
第五章 流體因素探討---------------------57
5.1入口壓力流失係數---------------------57
5.2入口渦流效應-------------------------59
5.3流體黏滯係數-------------------------60
5.4不同流體-----------------------------61
5.5小結---------------------------------63
第六章 結論-----------------------------79
參考文獻--------------------------------83
附錄A Gambit前處理建模範例--------------88
附錄B Fluent求解假設與分析--------------97
附錄C Fluent後處理的觀察----------------108
簡歷------------------------------------114

1.L. S. Andres, “Annular Pressure Seals and Hydrostatic Bearings,” In Design and Analysis of High Speed Pumps, Educational Notes RTO-EN-AVT-143, Paper 11. Neuilly-sur-Seine, France, pp. 11-1 – 11-36 (2006).
2.J. Li, R. Aguilar, L. San Andres, and J. M. Vance, “Dynamic Force Coefficients of a Multiple Blade, Multiple Pocket Gas Damper Seal: Test Results and Predictions,” ASME Journal of Tribology, Vol. 122, No. 1, pp. 317-322 (2000).
3.G. Chochua, W. Shyy, and J. Moore, “Computational Modeling for Honeycomb Stator Gas Annular Seal,” International Journal of Heat and Mass Transfer, Vol. 45, No. 9, pp. 1849-1863 (2002).
4.A. A. Lomakin, “Calculation of Critical Speed and Securing of Dynamic Stability of Hydraulic High Pressure Pumps with Reference of Forces Arising in Seal Gaps”, Energomashinostroenie, Vol. 4, pp. 1158-1162 (1958).
5.W. J. Chen, Introduction to Dynamics of Rotor-Bearing Systems, Trafford Publishing, Canada, pp. 297-304 (2005).
6.R. M. Sadri and J. M. Floryan, “Accurate Evaluation of the Loss Coefficient and the Entrance Length of the Inlet Region of a Channel,” ASME Journal of Tribology, Vol. 124, No.3 , pp. 685-693 (2002).
7.L. A. Villasmil, D. W. Childs, and H. C. Chen, “Understading Friction Factor Behavior in Liquid Annular Seals With Deliberately Roughened Surfaces,” ASME Journal of Tribology, Vol. 127, No. 1 , pp.213-222 (2005).
8.F. Simon and J. Frene, “Analysis for Incompressible Flow in Annular Pressure Seals,” ASME Journal of Tribology, Vol. 114, No. 3, pp. 431-438 (1992).
9.D. W. Childs, Turbomachinery Rotordynamic, Wiley-Interscience, New York, Chap. 4, pp. 227-289 (1993).
10.L. E. Barrett, “Turbulent Flow Annular Pump Seals: A Literature Review,” Shock and Vibration Digest, Vol. 16, No. 2, pp. 3-13 (1984).
11.L. San Andres, T. Soulas, and P. Fayolle, “A Bulk-Flow Model of Angled Injection Lomakin Bearings,” ASME Journal of Tribology, Vol. 129, No. 1, pp. 195-204 (2007).
12.A. Mihai, D. Cyril, and F. Jean, “The Lomakin Effect in Annular Gas Seals under Choked Flow Conditions,” ASME Journal of Tribology, Vol. 129, No. 4, pp. 1028-1034 (2007).
13.Z. S. Spakovszky and L. X. Liu, “Scaling Laws for Ultra-short Hydrostatic Gas Journal Bearings,” ASME Journal of Tribology, Vol. 127, No. 3, pp. 254-261 (2005).
14.D. W. Childs, Y. S. Shin, and B. Seifert, “A Design to Improve the Effectice Damping Characteristics of Hole Pattern Stator Annular Gas Seals,” ASME Journal of Tribology, Vol. 130, No. 1, pp. 1-7 (2008).
15.A. Mihai, H. Mathieu, and F. Jean, “Analysis of Tangential Against Rotation Injection Lomakin Bearings,” ASME Journal of Tribology, Vol. 127, No. 4, pp. 781-790 (2005).
16.M. D. William, “Analysis and Test of Multistage Pump ''Wet'' Critical Speeds,” STLE Tribology Transactions, Vol. 34, No. 3, pp. 445-457 (1991).
17.G. G. Hirs, “A Bulk-flow Theory for Turbulence in Lubricant Films,” ASME Journal of Lubrication Technology, Vol. 95, pp. 187-197 (1973).
18.G. G. Hirs, “A Systematic Study of Turbulent Film Flow,” ASME Journal of Lubrication Technology, Vol. 96, pp. 118-126 (1974).
19.H. F. Black, “Effects of Hydraulic Forces in Annular Pressure Seals on The Vibrations of Centrifugal Pump Rotors,” Journal of Mechanical Engineering Science, vol. 11, n 2, pp. 206-213 (1969).
20.H. F. Black and D. N. Jenssen, “Dynamic Hybrid Bearing Characteristics of Annular Controlled Leakage Seals,” Proceedings of the Institution of Mechanical Engineers, vol. 184, pp. 92-100 (1970).
21.D. W. Childs, “Dynamic Analysis of Turbulent Annular Seals Based on Hirs’ Lubrication Equation,” ASME Journal of Lubrication Technology, Vol. 105, No. 3, pp. 429-436 (1983).
22.D. W. Childs, “Finite-Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals,” ASME Journal of Lubrication Technology, Vol. 105, No. 3, pp. 437-445 (1983).
23.T. Soulas and L. San Andres, “A Buk Flow Model for Off-Centered Honeycomb Gas Seals,” ASME Journal of Engineering for Gas Turbines and Power, vol. 129, n 1, pp. 185-194 (2007).
24.A. J. M. Gamal and J. M. Vance, “Labyrinth Seal Leakage Tests: Tooth Profile, Tooth Thickness, and Eccentricity Effects,” ASME Journal of Tribology, Vol. 130, No. 1, pp. 1127-1138 (2008).
25.A. Picardo and D. W. Childs, “Rotordynamic Coefficients for a Tooth-on-Stator Labyrinth Seal at 70 Bar Supply Pressure: Measurements Versus Theory and Comparisons to a Hole-Pattern Stator Seal,” ASME Journal of Tribology, Vol. 127, No. 4, pp. 843-855 (2005).
26.D. W. Childs, L. E. Rodriguez, V. Culotta, A. AI-Ghasem, and M. Graviss, “Rotordynamic Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short Laminar Flow Annular seals,” ASME Journal of Tribology, Vol. 128, No. 2, pp. 378-387 (2006).
27.S. K. Baheti and R. G. Kirk, “Analysis of High Pressure Liquid Seal Ring Distortion and Stability Using Finite Element Methods, ” ASME Journal of Tribology, Vol. 121, No. 4, pp. 921-926 (1999).
28.K. D. Meck and G. Zhu, “Improving Mechanical Seal Reliability with Advanced Computational Engineering Tools, Part 1: FEA,” Sealing Technology, Vol. 2008, No. 1, pp. 8-11 (2008).
29.K. D. Meck and G. Zhu, “Improving Mechanical Seal Reliability with Advanced Computational Engineering Tools, Part 2 CFD and Application Examples,” Sealing Technology, Vol. 2008, No. 2, pp. 7-10 (2008).
30.R. Nordmann, F. J. Dietzen, and H. P. Weiser, “Calculation of Rotordynamic Coefficients and Leakage for Annular Gas Seals by Means of Finite Difference Techniques,” ASME Journal of Tribology, Vol. 111, No. 3, pp. 545-552 (1989).
31.D. L. Rhode and R. G. Adams, “Rub-Groove Width and Depth Effects on Flow Predictions for Straight-Through Labyrinth Seals,” ASME Journal of Tribology, Vol. 126, No. 4, pp. 781-787 (2004).
32.S. Florjancic and T. McCloskey, “Measurement and Prediction of Full Scale Annular Seal Coefficients,” Proceedings of the Eighth International Pump Users Symposium, Huston, Texas, pp. 71-83 (1991).
33.O. R. Marquette and D. W. Childs, “An Extended Three Control Volume Theory for Circumferentially-Grooved Liquid Seals,” ASME Journal of Tribology, Vol. 118, No. 2, pp. 276-285 (1996).
34.J. J. Moore and A. B. Palazzolo, “CFD Comparison to 3D Laser Anemometer and Rotordynamic Force Measurements for Grooved Liquid Annular Seals,” ASME Journal of Tribology, Vol. 121, No. 2, pp. 306-314 (1999).
35.J. M. Darden, E. M. Earhart, and G. T. Flowers, “Comparison of the Dynamic Characteristics of Smooth Annular Seals and Damping Seals,” ASME Journal of Tribology, Vol. 123, No. 4, pp. 857-863 (2001).
36.Y. Yoshda, Y. Tsujimoto, G. Morimoto, H. Nishida, and S. Morii, “Effect of Seal Geometry on Dynamic Impeller Fluid Force and Moments,” ASME Journal of Tribology, Vol. 125 , No. 5, pp.786-795 (2003).
37.Fluent Inc., FLUENT User’s Guide, Version 6.2 (2005).
38.W. T. Lindsey and D. W. Childs, “The Effects of Converging and Diverging Axial Taper on the Rotordynamic Coefficients of Liquid Annular Pressure Seals: Theory Versus Experiment,” ASME Journal of Tribology, Vol. 122, No. 2, pp. 126-131 (2000).
39.B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of Fluid Mechanics 4th Edition, John Wiley & Sons Inc., New Jersey, Chap. 8, pp. 480-489 (2002).
40.O. R. Marquette, D. W. Childs, and L. S. Andres, “Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory Versus Experiment,” ASME Journal of Tribology, Vol. 119, No. 3, pp. 443-448 (1997).
41.W. D. Marscher, “An End-User’s Guide to Centrifugal Pump Rotordynamics,” 23rd International Pump Users Symposium Proceedings, Texas A&M University, pp. 69-83 (2007).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top