跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊逸群
研究生(外文):Yi-Cyun Yang
論文名稱:非線性獨立成份分析與Gadaline類神經網路
論文名稱(外文):Nonlinear Independent Component Analysis using Generalized Adalines
指導教授:吳建銘吳建銘引用關係
指導教授(外文):Jiann-Ming Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:36
中文關鍵詞:後非線性解方法後非線性平均場退火理論
外文關鍵詞:post-nonlinear kernel methodKL divergencepost-nonlinear
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
為了解決線性或後非線性獨立成份分析問題,我們洐生了這個新方法。傳統獨立成份分析是以最小化重新得到的獨立成份元素間的KL值為基礎,有別於傳統獨立成份分析,這個新方法使用了週期性的最佳化後非線性解方法來解決線性或後非線性獨立成份的訊號
A new method is devised for linear and post-nonlinear independent component analysis. Unlike traditional statistics oriented ICA algorithms, which have been developed based on minimization of the Kullback-Leibler(KL) divergence between retrieved components, this method uses the recurrent optimal post-nonlinear kernel method to realize blind separation of linear or post-nonlinear mixtures of independent sources. The post-nonlinear mixing structure of independent sources is realized by multiple generalized adalines(gadalines). Following the leave-one-out learning strategy, hyper-parameters of each gadaline as well as intermediate independent components are optimized under a mean-field-annealing process to satisfy constraints given by multi-channel observations. The new method is shown more feasible for post-nonlinear independent component analysis. It indeed involves with no computations of optimizing statistics, such as the KL divergence or high order moments, which have been known diffcult to be resolved for nonlinear independent component analysis.
1 Introduction............................................1
2 Post-nonlinear mixtures of independent sources..........2
2.1 A weighted gadaline.................................2
2.2 Multiple weighted gadalines.........................3
3 Leave-one-out learning for post-nonlinear
independentcomponent analysis...........................4
3.1 Leave-one-out approximation.........................4
3.2 Optimal gadaline....................................4
3.3 Compensation for uncertainty........................8
3.4 A recurrent learning process for post-nonlinear
independent component analysis......................9
4 Numerical simulations..................................11
4.1 Post-nonlinear mixtures of arti…cial independent
sources............................................11
4.2 Blind separation of fetal ECGs.....................12
5 Conclusions............................................13
[1]L. B. Almeida, " Linear and nonlinear ICA based on mutual information," MISEP method, Signal Processing, vol. 84, pp. 231-245, 2003.
[2]S. I. Amari, A. Cichocki and H. H. Yang, " A new learning algorithm for blind signal separation," Advances in Neural Information Processing Systems, vol 8, pp. 757-763, 1996.
[3]J. Basak, and S. Amari, " Blind source separation of a mixture of uniformly distributed source signal: a novel approach," Neural Comput., vol. 11, no. 4, pp. 1011-1034. 1999.
[4]R. Boscolo, H. Pan, and V. Roychowdhury, " Independent component analysis based on nonparametric density estimation," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 55-65, 2004.
[5]J. F. Cardoso, " Blind Signal Separation: Statistical Principles," IEEE. vol. 86, no. 10, Oct. 1998.
[6]J. F. Cardoso, " High-order contrasts for independent component analysis," Neural Comput., vol. 11, pp. 157-192, 1999.
[7]P. Comom, " Independent component analysis, a new concept," Signal Process, vol. 36, no. 3, pp. 287-314, Apr 1994.
[8]S. Haykin, "Neural Networks: A Comprehensive Foundation," Prentice Hall, Upper Saddle River, 1999.
[9]T. Kohonen, " Self organizing maps," Springer, 1995.
[10]L. D. Lathauwer, B. D. Moor, and j. Vandewalle, " Fetal electrocardiogram extraction by blind source subspace separation," IEEE Trans. Biomedical Engineering, vol. 47, no. 5, May 2000.
[11]A. Taleb, and C. Jutten, " Source separation in post-nonlinear mixtures," IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2807-2820, 1999.
[12]B.Widrow, "Generalization and information storage in networks of adaline neuron in self-organizing systems," M. Yovitz, G. Jacobi, and G. Goldstein, Eds. Washington, DC: Spartan, pp. 435-461, 1962.
[13]J. M. Wu, and S. J. Chiu, " Independent component analysis using Potts models," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 202-211, Mar 2001.
[14]J. M. Wu, Z. H. Lin, and M. H. Chen, " Independent component analysis based on marginal density estimation using weighted Parzen windows," Master thesis, Department of Applied Mathematics, National Dong Hwa University, Jul. 2004.
[15]J. M. Wu, Z. H. Lin, and P. H. Hsu, " Function approximation using generalized adalines," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 541-558, May 2006.
[16]V. Zarzoso, and A. K. Nandi, " Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation," IEEE Trans. Biomedical Engineering, vol. 48, no. 1, Jan 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top