|
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016. [2] R. Aler, R. Martín, J. M. Valls, and I. M. Galván. A study of machine learning techniques for daily solar energy forecasting using numerical weather models. In Intelligent Distributed Computing VIII, pages 269–278. Springer, 2015. [3] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regres- sion. The American Statistician, 46(3):175–185, 1992. [4] P.Bacher,H.Madsen,andH.A.Nielsen.Onlineshort-termsolarpowerforecasting. Solar Energy, 83(10):1772–1783, 2009. [5] P. Chakraborty, M. Marwah, M. F. Arlitt, and N. Ramakrishnan. Fine-grained pho- tovoltaic output prediction using a bayesian ensemble. In AAAI. Citeseer, 2012. [6] J. Chen and C.-W. Ngo. Deep-based ingredient recognition for cooking recipe re- trieval. In Proceedings of the 2016 ACM on Multimedia Conference, pages 32–41. ACM, 2016. [7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated re- current neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. [8] M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz. Review of solar irradi- ance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews, 27:65–76, 2013. [9] M. Elhoseiny, T. El-Gaaly, A. Bakry, and A. Elgammal. Convolutional models for joint object categorization and pose estimation. arXiv preprint arXiv:1511.05175, 2015. [10] J. H. Friedman. Greedy function approximation: a gradient boosting machine. An- nals of statistics, pages 1189–1232, 2001. [11] Y. Gala, A. Fernández, and J. Dorronsoro. Machine learning prediction of global photovoltaic energy in spain. In International Conference on Renewable Energies and Power Quality, number 12, page 278, 2014. [12] A.GravesandN.Jaitly.Towardsend-to-endspeechrecognitionwithrecurrentneural networks. In ICML, volume 14, pages 1764–1772, 2014. [13] C.-T. Hsu, R. Korimara, L.-J. Tsai, and T.-J. Cheng. Photovoltaic power gener- ation system modeling using an artificial neural network. In Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014), pages 365–371. Springer, 2016. [14] E. Izgi, A. Öztopal, B. Yerli, M. K. Kaymak, and A. D. Şahin. Short–mid-term solar power prediction by using artificial neural networks. Solar Energy, 86(2):725–733, 2012. [15] S. Jafarzadeh, M. S. Fadali, and C. Y. Evrenosoglu. Solar power prediction using interval type-2 tsk modeling. IEEE Transactions on Sustainable Energy, 4(2):333– 339, 2013. [16] K. R. Kumar and M. S. Kalavathi. Artificial intelligence based forecast models for predicting solar power generation. 2016. [17] H. Long, Z. Zhang, and Y. Su. Analysis of daily solar power prediction with data- driven approaches. Applied Energy, 126:29–37, 2014. [18] E.Lorenz,T.Scheidsteger,J.Hurka,D.Heinemann,andC.Kurz.Regionalpvpower prediction for improved grid integration. Progress in Photovoltaics: Research and Applications, 19(7):757–771, 2011. [19] R. Martin, R. Aler, J. M. Valls, and I. M. Galván. Machine learning techniques for daily solar energy prediction and interpolation using numerical weather models. Concurrency and Computation: Practice and Experience, 28(4):1261–1274, 2016. [20] F.Pedregosa,G.Varoquaux,A.Gramfort,V.Michel,B.Thirion,O.Grisel,M.Blon- del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. [21] V. P. Singh, K. Vaibhav, and D. Chaturvedi. Solar power forecasting modeling us- ing soft computing approach. In Engineering (NUiCONE), 2012 Nirma University International Conference on, pages 1–5. IEEE, 2012. [22] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko. Sequence to sequence-video to text. In Proceedings of the IEEE International Con- ference on Computer Vision, pages 4534–4542, 2015. [23] B. Wolff, E. Lorenz, and O. Kramer. Statistical learning for short-term photovoltaic power predictions. In Computational Sustainability, pages 31–45. Springer, 2016.
|