|
1.Chang, F.S., et al., Synthesis and antiproliferative evaluations of certain 2-phenylvinylquinoline (2-styrylquinoline) and 2-furanylvinylquinoline derivatives. Bioorg Med Chem, 2010. 18(1): p. 124-33. 2.Popenoe, W., Cinchona cultivation in guatemala— a brief historical review up to 1943. Economic Botany, 1949. 3(2): p. 150-157. 3.Coatney, G.R., Pitfalls in a discovery: the chronicle of chloroquine. The American journal of tropical medicine and hygiene, 1963. 12(2): p. 121-128. 4.Kimura, T., et al., Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer research, 2013. 73(1): p. 3-7. 5.Chan-On, W., et al., Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells. Drug Des Devel Ther, 2015. 9: p. 2033-47. 6.Afzal, O., et al., A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem, 2015. 97: p. 871-910. 7.Musiol, R., et al., Quinoline-based antifungals. Curr Med Chem, 2010. 17(18): p. 1960-73. 8.Solomon, V.R. and H. Lee, Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem, 2011. 18(10): p. 1488-508. 9.Lilja, H., Structure, function, and regulation of the enzyme activity of prostate-specific antigen. World J Urol, 1993. 11(4): p. 188-91. 10.Swindle, P., et al., Proton magnetic resonance spectroscopy of the central, transition and peripheral zones of the prostate: assignments and correlation with histopathology. Magma, 2008. 21(6): p. 423-34. 11.Homma, Y., et al., Epidemiologic survey of lower urinary tract symptoms in Asia and Australia using the international prostate symptom score. Int J Urol, 1997. 4(1): p. 40-6. 12.衛生福利部. 中華民國105年衛生福利年報. 2016; Available from: http://www.mohw.gov.tw/CHT/Ministry/DM2_P.aspx?f_list_no=16&fod_list_no=6392&doc_no=59162&rn=64159114. 13.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30. 14.Hoffman, R.M., et al., Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study. J Natl Cancer Inst, 2001. 93(5): p. 388-95. 15.Peisch, S.F., et al., Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol, 2017. 35(6): p. 867-874. 16.Costello, L.C. and R.B. Franklin, The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Molecular Cancer, 2006. 5(1): p. 17. 17.Cuzick, J., et al., Prevention and early detection of prostate cancer. Lancet Oncol, 2014. 15(11): p. e484-92. 18.Wu, V.J., et al., Obesity, age, ethnicity, and clinical features of prostate cancer patients. Am J Clin Exp Urol, 2017. 5(1): p. 1-9. 19.Potter, S.R. and A.W. Partin, Hereditary and familial prostate cancer: biologic aggressiveness and recurrence. Rev Urol, 2000. 2(1): p. 35-6. 20.Smith, J.R., et al., Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science, 1996. 274(5291): p. 1371-4. 21.Xu, J., et al., Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet, 1998. 20(2): p. 175-9. 22.Giri, V.N. and J.L. Beebe-Dimmer, Familial prostate cancer. Semin Oncol, 2016. 43(5): p. 560-565. 23.Tarone, R.E., K.C. Chu, and O.W. Brawley, Implications of stage-specific survival rates in assessing recent declines in prostate cancer mortality rates. Epidemiology, 2000. 11(2): p. 167-70. 24.國家衛生研究院, 攝護腺(前列腺)癌臨床診療指引. 2010. 25.心血管保健諮詢網. 攝護腺癌-分期症狀治療存活率及飲食禁忌. 2005; Available from: http://www.allergen.com.tw/Prostate_Cancer.php. 26.Carvalhal, G.F., et al., Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng./ml. or less. The Journal of Urology, 1999. 161(3): p. 835-839. 27.Stenman, U.-H., et al., Prostate-specific antigen. Seminars in Cancer Biology, 1999. 9(2): p. 83-93. 28.Crawford, E.D. and T.W. Flaig, Optimizing outcomes of advanced prostate cancer: drug sequencing and novel therapeutic approaches. Oncology (Williston Park), 2012. 26(1): p. 70-7. 29.Emberton, M., et al., Benign prostatic hyperplasia: a progressive disease of aging men1. Urology, 2003. 61(2): p. 267-273. 30.Ugurlu, O., et al., Impacts of antibiotic and anti-inflammatory therapies on serum prostate-specific antigen levels in the presence of prostatic inflammation: a prospective randomized controlled trial. Urol Int, 2010. 84(2): p. 185-90. 31.Hambrock, T., et al., Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European urology, 2012. 61(1): p. 177-84. 32.Schoots, I.G., et al., Magnetic Resonance Imaging–targeted Biopsy May Enhance the Diagnostic Accuracy of Significant Prostate Cancer Detection Compared to Standard Transrectal Ultrasound-guided Biopsy: A Systematic Review and Meta-analysis. European Urology, 2015. 68(3): p. 438-450. 33.Rybak, A.P., R.G. Bristow, and A. Kapoor, Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 2015. 6(4): p. 1900. 34.Charas, T., A. Taggar, and M.J. Zelefsky, Second malignancy risk in prostate cancer and radiotherapy. 2017, Future Medicine. 35.Cookson, M.S., et al., Castration-resistant prostate cancer: AUA Guideline. The journal of urology, 2013. 190(2): p. 429-38. 36.Engels, F.K., et al., Potential for improvement of docetaxel-based chemotherapy: a pharmacological review. Br J Cancer, 2005. 93(2): p. 173-7. 37.Jones, S.E., et al., Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol, 2005. 23(24): p. 5542-51. 38.Cheever, M.A. and C.S. Higano, PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res, 2011. 17(11): p. 3520-6. 39.Galsky, M.D., et al., Cabazitaxel. Nat Rev Drug Discov, 2010. 9(9): p. 677-678. 40.O''Donnell, A., et al., Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer, 2004. 90(12): p. 2317-25. 41.Hoffman-Censits, J. and W.K. Kelly, Enzalutamide: a novel antiandrogen for patients with castrate-resistant prostate cancer. Clinical Cancer Research, 2013. 19(6): p. 1335-1339. 42.Seruga, B., A. Ocana, and I.F. Tannock, Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol, 2011. 8(1): p. 12-23. 43.Abal, M., J.M. Andreu, and I. Barasoain, Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets, 2003. 3(3): p. 193-203. 44.Drukman, S. and M. Kavallaris, Microtubule alterations and resistance to tubulin-binding agents (review). International journal of oncology, 2002. 21(3): p. 621-628. 45.Maccioni, R.B. and V. Cambiazo, Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev, 1995. 75(4): p. 835-64. 46.Don, S., et al., Neuronal-associated microtubule proteins class III beta-tubulin and MAP2c in neuroblastoma: role in resistance to microtubule-targeted drugs. Molecular Cancer Therapeutics, 2004. 3(9): p. 1137-46. 47.Martello, L.A., et al., Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Research, 2003. 63(6): p. 1207-13. 48.Grenningloh, G., et al., Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. Developmental neurobiology, 2004. 58(1): p. 60-9. 49.Reyes, H.D., et al., High stathmin expression is a marker for poor clinical outcome in endometrial cancer: An NRG oncology group/gynecologic oncology group study. Gynecologic Oncology, 2017. 50.Fujioka, H., et al., Comparative proteomic analysis of paclitaxel resistance-related proteins in human breast cancer cell lines. Oncology letters, 2017. 13(1): p. 289-295. 51.Tan, M.H., et al., Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Research and Treatment, 2012. 131(3): p. 849-58. 52.Sekino, Y., et al., KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol Oncol, 2017. 35(1): p. 31.e13-31.e20. 53.Yang, J., et al., Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Research and Reports in Urology, 2017. 9: p. 71-77. 54.Chen, Z., et al., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Letters, 2016. 370(1): p. 153-64. 55.Ni Chonghaile, T. and A. Letai, Mimicking the BH3 domain to kill cancer cells. Oncogene, 2008. 27 Suppl 1: p. S149-57. 56.Miyashita, T. and J.C. Reed, Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood, 1993. 81(1): p. 151-7. 57.Ashkenazi, A., et al., From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nature Reviews Drug Discovery, 2017. 16(4): p. 273-284. 58.Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111. 59.Nishida, S., et al., Gene Expression Profiles of Prostate Cancer Stem Cells Isolated by Aldehyde Dehydrogenase Activity Assay. The Journal of Urology, 2012. 188(1): p. 294-299. 60.Abdullah, L.N. and E.K. Chow, Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine, 2013. 2(1): p. 3. 61.Yun, E.-J., et al., Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016. 22(3): p. 670-679. 62.Yang, D.R., et al., Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem, 2013. 288(23): p. 16476-83. 63.Redmer, T., et al., The role of the cancer stem cell marker CD271 in DNA damage response and drug resistance of melanoma cells. Oncogenesis, 2017. 6(1): p. e291. 64.Jeggo, P.A., L.H. Pearl, and A.M. Carr, DNA repair, genome stability and cancer: a historical perspective. Nature Reviews Cancer, 2016. 16(1): p. 35-42. 65.Lugo, T.G., et al., Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 1990. 247(4946): p. 1079-82. 66.Shi, Y., et al., A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). Journal of Thoracic Oncology, 2014. 9(2): p. 154-62. 67.Li, M.R., et al., FBXW7 expression is associated with prognosis and chemotherapeutic outcome in Chinese patients with gastric adenocarcinoma. BMC Gastroenterology, 2017. 17(1): p. 60. 68.Wertz, I.E., et al., Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011. 471(7336): p. 110-4. 69.Wendler, F., et al., Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. Oncogene, 2017. 36(7): p. 877-884. 70.Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329-35. 71.Wang, T., et al., Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences, 2014. 111(31): p. E3234-42. 72.Minciacchi, V.R., et al., MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Research, 2017. 77(9): p. 2306-2317. 73.Katheder, N.S., et al., Microenvironmental autophagy promotes tumour growth. Nature, 2017. 541(7637): p. 417-420. 74.Portugal, J., M. Bataller, and S. Mansilla, Cell death pathways in response to antitumor therapy. Tumori, 2009. 95(4): p. 409-21. 75.Van Cruchten, S. and W. Van Den Broeck, Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia, Histologia, Embryologia, 2002. 31(4): p. 214-23. 76.Ouyang, L., et al., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif, 2012. 45(6): p. 487-98. 77.Nikoletopoulou, V., et al., Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013. 1833(12): p. 3448-3459. 78.Abou-Ghali, M. and J. Stiban, Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J Biol Sci, 2015. 22(6): p. 760-72. 79.Rong, Y. and C.W. Distelhorst, Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol, 2008. 70: p. 73-91. 80.Bhola, P.D. and A. Letai, Mitochondria-Judges and Executioners of Cell Death Sentences. Mol Cell, 2016. 61(5): p. 695-704. 81.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49. 82.The cell cycle, mitosis and meiosis. Available from: http://www2.le.ac.uk/projects/vgec/schoolscolleges/topics/cellcycle-mitosis-meiosis. 83.Yu, Y.-C., et al., Design, synthesis and pharmacological evaluation of new 2-oxo-quinoline derivatives containing α-aminophosphonates as potential antitumor agents. MedChemComm, 2017. 84.Lin, R.-W., et al., CFS-1686 causes cell cycle arrest at intra-S phase by interference of interaction of topoisomerase 1 with DNA. PloS one, 2014. 9(12): p. e113832. 85.Cheng, K.C., et al., Quinoline-Based Compound BPIQ Exerts Anti-Proliferative Effects on Human Retinoblastoma Cells via Modulating Intracellular Reactive Oxygen Species. Arch Immunol Ther Exp (Warsz), 2016. 64(2): p. 139-47. 86.Tseng, C.H., et al., Synthesis and antiproliferative evaluation of 6-aryl-11-iminoindeno[1,2-c]quinoline derivatives. Bioorg Med Chem, 2011. 19(24): p. 7653-63. 87.Tseng, C.H., et al., Discovery of 2-[2-(5-nitrofuran-2-yl)vinyl]quinoline derivatives as a novel type of antimetastatic agents. Bioorg Med Chem, 2015. 23(1): p. 141-8. 88.Singh, S., et al., Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem, 2015. 30(3): p. 492-504. 89.Van Cruchten, S. and W. Van Den Broeck, Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia, histologia, embryologia, 2002. 31(4): p. 214-223. 90.Li, H.Y., et al., Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis, 2015. 6: p. e1604. 91.Nikoletopoulou, V., et al., Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta, 2013. 1833(12): p. 3448-59. 92.Cai, J., J. Yang, and D.P. Jones, Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta, 1998. 1366(1-2): p. 139-49. 93.Zhang, M., et al., Gossypol induces apoptosis in human PC-3 prostate cancer cells by modulating caspase-dependent and caspase-independent cell death pathways. Life Sci, 2007. 80(8): p. 767-74. 94.Kang, M.H. and C.P. Reynolds, Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res, 2009. 15(4): p. 1126-32. 95.Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911. 96.Lee, J., et al., Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway. Life Sci, 2014. 119(1-2): p. 47-55. 97.Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6. 98.Zou, H., et al., Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 1997. 90(3): p. 405-13. 99.Lapenna, S. and A. Giordano, Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov, 2009. 8(7): p. 547-66. 100.Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66. 101.Ingersoll, M.A., et al., Statin derivatives as therapeutic agents for castration-resistant prostate cancer. Cancer Lett, 2016. 383(1): p. 94-105. 102.Azarenko, O., et al., Antiproliferative mechanism of action of the novel taxane cabazitaxel as compared with the parent compound docetaxel in MCF7 breast cancer cells. Mol Cancer Ther, 2014. 13(8): p. 2092-103. 103.Gascoigne, K.E. and S.S. Taylor, How do anti-mitotic drugs kill cancer cells? J Cell Sci, 2009. 122(Pt 15): p. 2579-85. 104.Sasaki, K., et al., Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer, 2010. 10(1): p. 370. 105.Schnerch, D., et al., Cell cycle control in acute myeloid leukemia. Am J Cancer Res, 2012. 2(5): p. 508-28. 106.Wang, Y., et al., Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer, 2009. 8: p. 8. 107.Sui, M., et al., Fulvestrant (ICI 182,780) sensitizes breast cancer cells expressing estrogen receptor α to vinblastine and vinorelbine. Breast Cancer Research and Treatment, 2010. 121(2): p. 335-345. 108.Radhakrishnan, V., Y.-S. Song, and D. Thiruvengadam, Romidepsin (depsipeptide) induced cell cycle arrest, apoptosis and histone hyperacetylation in lung carcinoma cells (A549) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Biomedicine & Pharmacotherapy, 2008. 62(2): p. 85-93. 109.Chiu, C.-C., et al., Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells. Cancer Letters, 2005. 223(2): p. 249-258. 110.Hsu, S.C., et al., Ganoderma tsugae extracts inhibit colorectal cancer cell growth via G(2)/M cell cycle arrest. J Ethnopharmacol, 2008. 120(3): p. 394-401. 111.Horng, C.T., et al., Koelreuteria Formosana Extract Induces Growth Inhibition and Cell Death in Human Colon Carcinoma Cells via G2/M Arrest and LC3-II Activation-Dependent Autophagy. Nutr Cancer, 2017. 69(1): p. 44-55. 112.Sun, W.J., et al., Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol, 2017. 127: p. 90-100. 113.Chao, M.W., et al., An oral quinoline derivative, MPT0B392, causes leukemic cells mitotic arrest and overcomes drug resistant cancer cells. Oncotarget, 2017. 8(17): p. 27772-27785. 114.Kim, J.Y., et al., p53 interferes with microtubule-stabilizing agent-induced apoptosis in prostate and colorectal cancer cells. Int J Mol Med, 2013. 31(6): p. 1388-94. 115.Koopman, G., et al., Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 1994. 84(5): p. 1415-20. 116.Vermes, I., C. Haanen, and C. Reutelingsperger, Flow cytometry of apoptotic cell death. J Immunol Methods, 2000. 243(1-2): p. 167-90. 117.Burma, S., et al., ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 2001. 276(45): p. 42462-7. 118.Rogakou, E.P., et al., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 1998. 273(10): p. 5858-68. 119.Keogh, M.C., et al., A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature, 2006. 439(7075): p. 497-501. 120.Edlund, S., et al., Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell, 2003. 14(2): p. 529-44. 121.Chiu, C.C., et al., p38 MAPK and NF-kappaB pathways are involved in naphtho[1,2-b] furan-4,5-dione induced anti-proliferation and apoptosis of human hepatoma cells. Cancer Lett, 2010. 295(1): p. 92-9. 122.Hao, W., et al., Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep, 2015. 5: p. 10336. 123.Jeong, S., et al., Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. BMC Cancer, 2014. 14: p. 481. 124.Nikhil, K., et al., Pterostilbene-isothiocyanate conjugate suppresses growth of prostate cancer cells irrespective of androgen receptor status. PLoS One, 2014. 9(4): p. e93335. 125.McCubrey, J.A., et al., Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017. 8(8): p. 14221-14250. 126.Chen, D., et al., MicroRNA-451 induces epithelial–mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. European journal of cancer, 2014. 50(17): p. 3050-3067. 127.Kang, N., et al., Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem Toxicol, 2014. 67: p. 193-200. 128.Lee, H.J., et al., Flavonoids isolated from Citrus platymamma induce mitochondrial-dependent apoptosis in AGS cells by modulation of the PI3K/AKT and MAPK pathways. Oncol Rep, 2015. 34(3): p. 1517-25.
|