跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳羿霈
研究生(外文):Yi-Pei Chen
論文名稱:新穎喹啉衍生物誘導具歐洲杉醇抗藥性的攝護腺癌細胞內源性凋亡途徑和細胞週期Intra-S停滯
論文名稱(外文):A Novel Quinoline Derivative Induced Intrinsic Apoptotic Pathway and Intra-S Phase Arrest in Docetaxel-Resistant Prostate Cancer Cell
指導教授:陳惠亭
指導教授(外文):Hui-Ting Chen
口試委員:王記慧劉光耀
口試委員(外文):Chi-Huei WangGuang-Yaw Liu
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:香粧品學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:啉衍生物攝護腺癌細胞週期intra-S期停滯內生性凋亡
外文關鍵詞:quinoline derivativeprostate cancerintra-S phase arrestintrinsic apoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,新合成的喹啉衍生物BV001對攝護腺癌(prostate cancer,PCa)細胞具有細胞毒性作用。BV001被發現能誘導攝護腺癌細胞株(PC3和PC/DX25)intra-S細胞週期之停滯而具有抗增殖作用。歐洲杉醇(docetaxel)為去勢抗性攝護腺癌(castration-resistant prostate cancer,簡稱CRPC)患者的一線化療藥。然而,幾乎所有患者於三至五個月內仍死於歐洲杉醇抗性之去勢抗性攝護腺癌。因此,CRPC患者的有效化學治療劑的發展已成為重要之議題。BV001用於攝護腺癌細胞株PC3和對歐洲杉醇具抗藥性之PC/DX25之研究。針對PC3和PC/DX25,BV001的IC50分別為1.75 ± 0.32和1.6 ± 0.28 μM,表明BV001在兩種細胞株皆具有細胞毒殺作用。BV001同時增加PC3及PC/DX25細胞內ROS的產生,ROS的產生量皆為控制組的1.5倍,ROS的產生是造成DNA受損的因素之一。細胞週期分析顯示,BV001處理於PC3和PC/DX25中,導致DNA受損而促使intra-S細胞週期停滯且處理時間增加凋亡細胞也隨之增加,由p-H2AX的表現證實DNA受損及intra-S及G2/M細胞週期蛋白的調控證實intra-S細胞週期停滯,如cyclin A、CDK2、cdc25c、cyclin B1及CDK1。由annexin V-FITC/PI雙染法更確認BV001誘導攝護腺癌凋亡結果。同時,西方點墨法結果顯示,BV001抑制Bcl-2的表現,增加Bax和Bad的表現,誘發細胞色素c(cytochrome c,cyto c)由粒線體膜釋放至細胞質,活化caspase 3及降解PARP,最終導致攝護腺癌細胞的凋亡。結論,BV001通過細胞週期intra-S停滯誘導攝護腺癌細胞凋亡,主要經由細胞內ROS的產生促使DNA受損,調控細胞週期intra-S相關蛋白的抑制及粒線體相關路徑調控。
In this study, BV001 is a new synthetic quinoline derivative with the cytotoxic effects in prostate cancer(PCa) cells. BV001 has been found to have the anti-proliferation in PCa cell lines(PC3 and PC/DX25) by arresting cell cycle in intra-S phase. Nowadays, the docetaxel-base therapies are used as a first-line chemotherapy for castration-resistant prostate cancer(CRPC) patients. However, almost all patients died from docetaxel-resistant CRPC during three to five months. Hence, the development of effective chemotherapeutic agents for CRPC patients has become imperative and important. Cytotoxicity of BV001 was examined in PC3 and PC/DX25(a docetaxel-resistant subline) by MTT assay. IC50 of BV001 in PC3 and PC/DX25 were 1.75 ± 0.32 and 1.6 ± 0.28 μM, respectively, indicating that BV001 was with the cytotoxic effects in both cell lines. BV001 increased the production of ROS in PC3 and PC/DX25 cells, and the ROS generation was 1.5 times than control group. ROS generation was one of the factors that caused DNA damage. Cell cycle analysis showed that BV001-treated PC3 and PC/DX25 leaded to DNA damage inducing intra-S phase arrest and increasing the deaths of apoptotic cell in time increasing. The results showed that the expression of p-H2AX confirmed DNA damage, and the modulation of intra-S and G2/M cell cycle regulators, such as cyclin A, CDK2, cdc25c, cyclin B1 and CDK1, confirmed intra-S phase arrest. The results of annexin V-FITC/PI double staining assay also confirmed BV001-induced apoptotic prostate cancer. Simultaneously, the results showed BV001 medicated apoptosis of PCa cells through the down-regulation of Bcl-2, the up-regulation of Bax and Bad, the releasing of cytosol cyto c from mitochondria, the degradation of PARP and the activation of caspase 3 by Western blot. In conclusion, BV001 induces apoptosis of prostate cancer cells through cell cycle intra-S arrest because intracellular ROS production resulted in DNA damage which regulated cell cycle intra-S-related protein and mitochondrial-dependent signaling pathway.
壹、中文摘要1
貳、英文摘要(Abstract)2
參、前言4
肆、緒論5
一、喹喹啉(Quinoline)衍生物之介紹5
二、人類攝護腺及攝護腺癌之介紹7
(一)生理構造7
(二)流行病學7
(三)風險因子8
三、人類攝護腺癌治療之介紹10
(一)診斷方法10
(二)治療方法12
四、歐洲杉醇(Docetaxel)的抗藥性機制15
五、細胞凋亡機制21
六、細胞週期23
伍、研究動機26
陸、材料與方法27
一、實驗材料27
二、研究方法32
(一)細胞培養32
(二)細胞存活率試驗(MTT assay)33
(三)細胞週期分析34
(四)細胞凋亡分析35
(五)細胞內ROS含量試驗36
(六)西方點墨法36
柒、實驗結果40
一、BV001抑制攝護腺癌細胞株生長40
二、BV001誘導攝護腺癌細胞株細胞週期停滯於Intra-S期41
三、BV001誘導攝護腺癌細胞株凋亡與死亡42
四、BV001經由粒線體相關途徑誘導攝護腺癌細胞凋亡42
五、BV001調控攝護腺癌細胞MAPK途徑43
六、BV001誘導攝護腺癌細胞株DNA受損43
七、BV001調控攝護腺癌細胞株的細胞週期蛋白表現導致細胞週期停滯於intra-S期43
八、BV001誘導攝護腺癌細胞株ROS量增加44
捌、討論46
玖、結論52
壹拾、圖表53
壹拾壹、參考文獻72
壹拾貳、英文縮寫表79
1.Chang, F.S., et al., Synthesis and antiproliferative evaluations of certain 2-phenylvinylquinoline (2-styrylquinoline) and 2-furanylvinylquinoline derivatives. Bioorg Med Chem, 2010. 18(1): p. 124-33.
2.Popenoe, W., Cinchona cultivation in guatemala— a brief historical review up to 1943. Economic Botany, 1949. 3(2): p. 150-157.
3.Coatney, G.R., Pitfalls in a discovery: the chronicle of chloroquine. The American journal of tropical medicine and hygiene, 1963. 12(2): p. 121-128.
4.Kimura, T., et al., Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer research, 2013. 73(1): p. 3-7.
5.Chan-On, W., et al., Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells. Drug Des Devel Ther, 2015. 9: p. 2033-47.
6.Afzal, O., et al., A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem, 2015. 97: p. 871-910.
7.Musiol, R., et al., Quinoline-based antifungals. Curr Med Chem, 2010. 17(18): p. 1960-73.
8.Solomon, V.R. and H. Lee, Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem, 2011. 18(10): p. 1488-508.
9.Lilja, H., Structure, function, and regulation of the enzyme activity of prostate-specific antigen. World J Urol, 1993. 11(4): p. 188-91.
10.Swindle, P., et al., Proton magnetic resonance spectroscopy of the central, transition and peripheral zones of the prostate: assignments and correlation with histopathology. Magma, 2008. 21(6): p. 423-34.
11.Homma, Y., et al., Epidemiologic survey of lower urinary tract symptoms in Asia and Australia using the international prostate symptom score. Int J Urol, 1997. 4(1): p. 40-6.
12.衛生福利部. 中華民國105年衛生福利年報. 2016; Available from: http://www.mohw.gov.tw/CHT/Ministry/DM2_P.aspx?f_list_no=16&fod_list_no=6392&doc_no=59162&rn=64159114.
13.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30.
14.Hoffman, R.M., et al., Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study. J Natl Cancer Inst, 2001. 93(5): p. 388-95.
15.Peisch, S.F., et al., Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol, 2017. 35(6): p. 867-874.
16.Costello, L.C. and R.B. Franklin, The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Molecular Cancer, 2006. 5(1): p. 17.
17.Cuzick, J., et al., Prevention and early detection of prostate cancer. Lancet Oncol, 2014. 15(11): p. e484-92.
18.Wu, V.J., et al., Obesity, age, ethnicity, and clinical features of prostate cancer patients. Am J Clin Exp Urol, 2017. 5(1): p. 1-9.
19.Potter, S.R. and A.W. Partin, Hereditary and familial prostate cancer: biologic aggressiveness and recurrence. Rev Urol, 2000. 2(1): p. 35-6.
20.Smith, J.R., et al., Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science, 1996. 274(5291): p. 1371-4.
21.Xu, J., et al., Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet, 1998. 20(2): p. 175-9.
22.Giri, V.N. and J.L. Beebe-Dimmer, Familial prostate cancer. Semin Oncol, 2016. 43(5): p. 560-565.
23.Tarone, R.E., K.C. Chu, and O.W. Brawley, Implications of stage-specific survival rates in assessing recent declines in prostate cancer mortality rates. Epidemiology, 2000. 11(2): p. 167-70.
24.國家衛生研究院, 攝護腺(前列腺)癌臨床診療指引. 2010.
25.心血管保健諮詢網. 攝護腺癌-分期症狀治療存活率及飲食禁忌. 2005; Available from: http://www.allergen.com.tw/Prostate_Cancer.php.
26.Carvalhal, G.F., et al., Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng./ml. or less. The Journal of Urology, 1999. 161(3): p. 835-839.
27.Stenman, U.-H., et al., Prostate-specific antigen. Seminars in Cancer Biology, 1999. 9(2): p. 83-93.
28.Crawford, E.D. and T.W. Flaig, Optimizing outcomes of advanced prostate cancer: drug sequencing and novel therapeutic approaches. Oncology (Williston Park), 2012. 26(1): p. 70-7.
29.Emberton, M., et al., Benign prostatic hyperplasia: a progressive disease of aging men1. Urology, 2003. 61(2): p. 267-273.
30.Ugurlu, O., et al., Impacts of antibiotic and anti-inflammatory therapies on serum prostate-specific antigen levels in the presence of prostatic inflammation: a prospective randomized controlled trial. Urol Int, 2010. 84(2): p. 185-90.
31.Hambrock, T., et al., Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European urology, 2012. 61(1): p. 177-84.
32.Schoots, I.G., et al., Magnetic Resonance Imaging–targeted Biopsy May Enhance the Diagnostic Accuracy of Significant Prostate Cancer Detection Compared to Standard Transrectal Ultrasound-guided Biopsy: A Systematic Review and Meta-analysis. European Urology, 2015. 68(3): p. 438-450.
33.Rybak, A.P., R.G. Bristow, and A. Kapoor, Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 2015. 6(4): p. 1900.
34.Charas, T., A. Taggar, and M.J. Zelefsky, Second malignancy risk in prostate cancer and radiotherapy. 2017, Future Medicine.
35.Cookson, M.S., et al., Castration-resistant prostate cancer: AUA Guideline. The journal of urology, 2013. 190(2): p. 429-38.
36.Engels, F.K., et al., Potential for improvement of docetaxel-based chemotherapy: a pharmacological review. Br J Cancer, 2005. 93(2): p. 173-7.
37.Jones, S.E., et al., Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol, 2005. 23(24): p. 5542-51.
38.Cheever, M.A. and C.S. Higano, PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res, 2011. 17(11): p. 3520-6.
39.Galsky, M.D., et al., Cabazitaxel. Nat Rev Drug Discov, 2010. 9(9): p. 677-678.
40.O''Donnell, A., et al., Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer, 2004. 90(12): p. 2317-25.
41.Hoffman-Censits, J. and W.K. Kelly, Enzalutamide: a novel antiandrogen for patients with castrate-resistant prostate cancer. Clinical Cancer Research, 2013. 19(6): p. 1335-1339.
42.Seruga, B., A. Ocana, and I.F. Tannock, Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol, 2011. 8(1): p. 12-23.
43.Abal, M., J.M. Andreu, and I. Barasoain, Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets, 2003. 3(3): p. 193-203.
44.Drukman, S. and M. Kavallaris, Microtubule alterations and resistance to tubulin-binding agents (review). International journal of oncology, 2002. 21(3): p. 621-628.
45.Maccioni, R.B. and V. Cambiazo, Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev, 1995. 75(4): p. 835-64.
46.Don, S., et al., Neuronal-associated microtubule proteins class III beta-tubulin and MAP2c in neuroblastoma: role in resistance to microtubule-targeted drugs. Molecular Cancer Therapeutics, 2004. 3(9): p. 1137-46.
47.Martello, L.A., et al., Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Research, 2003. 63(6): p. 1207-13.
48.Grenningloh, G., et al., Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. Developmental neurobiology, 2004. 58(1): p. 60-9.
49.Reyes, H.D., et al., High stathmin expression is a marker for poor clinical outcome in endometrial cancer: An NRG oncology group/gynecologic oncology group study. Gynecologic Oncology, 2017.
50.Fujioka, H., et al., Comparative proteomic analysis of paclitaxel resistance-related proteins in human breast cancer cell lines. Oncology letters, 2017. 13(1): p. 289-295.
51.Tan, M.H., et al., Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Research and Treatment, 2012. 131(3): p. 849-58.
52.Sekino, Y., et al., KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol Oncol, 2017. 35(1): p. 31.e13-31.e20.
53.Yang, J., et al., Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Research and Reports in Urology, 2017. 9: p. 71-77.
54.Chen, Z., et al., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Letters, 2016. 370(1): p. 153-64.
55.Ni Chonghaile, T. and A. Letai, Mimicking the BH3 domain to kill cancer cells. Oncogene, 2008. 27 Suppl 1: p. S149-57.
56.Miyashita, T. and J.C. Reed, Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood, 1993. 81(1): p. 151-7.
57.Ashkenazi, A., et al., From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nature Reviews Drug Discovery, 2017. 16(4): p. 273-284.
58.Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111.
59.Nishida, S., et al., Gene Expression Profiles of Prostate Cancer Stem Cells Isolated by Aldehyde Dehydrogenase Activity Assay. The Journal of Urology, 2012. 188(1): p. 294-299.
60.Abdullah, L.N. and E.K. Chow, Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine, 2013. 2(1): p. 3.
61.Yun, E.-J., et al., Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016. 22(3): p. 670-679.
62.Yang, D.R., et al., Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem, 2013. 288(23): p. 16476-83.
63.Redmer, T., et al., The role of the cancer stem cell marker CD271 in DNA damage response and drug resistance of melanoma cells. Oncogenesis, 2017. 6(1): p. e291.
64.Jeggo, P.A., L.H. Pearl, and A.M. Carr, DNA repair, genome stability and cancer: a historical perspective. Nature Reviews Cancer, 2016. 16(1): p. 35-42.
65.Lugo, T.G., et al., Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 1990. 247(4946): p. 1079-82.
66.Shi, Y., et al., A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). Journal of Thoracic Oncology, 2014. 9(2): p. 154-62.
67.Li, M.R., et al., FBXW7 expression is associated with prognosis and chemotherapeutic outcome in Chinese patients with gastric adenocarcinoma. BMC Gastroenterology, 2017. 17(1): p. 60.
68.Wertz, I.E., et al., Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011. 471(7336): p. 110-4.
69.Wendler, F., et al., Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. Oncogene, 2017. 36(7): p. 877-884.
70.Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329-35.
71.Wang, T., et al., Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences, 2014. 111(31): p. E3234-42.
72.Minciacchi, V.R., et al., MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Research, 2017. 77(9): p. 2306-2317.
73.Katheder, N.S., et al., Microenvironmental autophagy promotes tumour growth. Nature, 2017. 541(7637): p. 417-420.
74.Portugal, J., M. Bataller, and S. Mansilla, Cell death pathways in response to antitumor therapy. Tumori, 2009. 95(4): p. 409-21.
75.Van Cruchten, S. and W. Van Den Broeck, Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia, Histologia, Embryologia, 2002. 31(4): p. 214-23.
76.Ouyang, L., et al., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif, 2012. 45(6): p. 487-98.
77.Nikoletopoulou, V., et al., Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013. 1833(12): p. 3448-3459.
78.Abou-Ghali, M. and J. Stiban, Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J Biol Sci, 2015. 22(6): p. 760-72.
79.Rong, Y. and C.W. Distelhorst, Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol, 2008. 70: p. 73-91.
80.Bhola, P.D. and A. Letai, Mitochondria-Judges and Executioners of Cell Death Sentences. Mol Cell, 2016. 61(5): p. 695-704.
81.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49.
82.The cell cycle, mitosis and meiosis. Available from: http://www2.le.ac.uk/projects/vgec/schoolscolleges/topics/cellcycle-mitosis-meiosis.
83.Yu, Y.-C., et al., Design, synthesis and pharmacological evaluation of new 2-oxo-quinoline derivatives containing α-aminophosphonates as potential antitumor agents. MedChemComm, 2017.
84.Lin, R.-W., et al., CFS-1686 causes cell cycle arrest at intra-S phase by interference of interaction of topoisomerase 1 with DNA. PloS one, 2014. 9(12): p. e113832.
85.Cheng, K.C., et al., Quinoline-Based Compound BPIQ Exerts Anti-Proliferative Effects on Human Retinoblastoma Cells via Modulating Intracellular Reactive Oxygen Species. Arch Immunol Ther Exp (Warsz), 2016. 64(2): p. 139-47.
86.Tseng, C.H., et al., Synthesis and antiproliferative evaluation of 6-aryl-11-iminoindeno[1,2-c]quinoline derivatives. Bioorg Med Chem, 2011. 19(24): p. 7653-63.
87.Tseng, C.H., et al., Discovery of 2-[2-(5-nitrofuran-2-yl)vinyl]quinoline derivatives as a novel type of antimetastatic agents. Bioorg Med Chem, 2015. 23(1): p. 141-8.
88.Singh, S., et al., Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem, 2015. 30(3): p. 492-504.
89.Van Cruchten, S. and W. Van Den Broeck, Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia, histologia, embryologia, 2002. 31(4): p. 214-223.
90.Li, H.Y., et al., Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis, 2015. 6: p. e1604.
91.Nikoletopoulou, V., et al., Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta, 2013. 1833(12): p. 3448-59.
92.Cai, J., J. Yang, and D.P. Jones, Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta, 1998. 1366(1-2): p. 139-49.
93.Zhang, M., et al., Gossypol induces apoptosis in human PC-3 prostate cancer cells by modulating caspase-dependent and caspase-independent cell death pathways. Life Sci, 2007. 80(8): p. 767-74.
94.Kang, M.H. and C.P. Reynolds, Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res, 2009. 15(4): p. 1126-32.
95.Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911.
96.Lee, J., et al., Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway. Life Sci, 2014. 119(1-2): p. 47-55.
97.Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6.
98.Zou, H., et al., Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 1997. 90(3): p. 405-13.
99.Lapenna, S. and A. Giordano, Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov, 2009. 8(7): p. 547-66.
100.Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
101.Ingersoll, M.A., et al., Statin derivatives as therapeutic agents for castration-resistant prostate cancer. Cancer Lett, 2016. 383(1): p. 94-105.
102.Azarenko, O., et al., Antiproliferative mechanism of action of the novel taxane cabazitaxel as compared with the parent compound docetaxel in MCF7 breast cancer cells. Mol Cancer Ther, 2014. 13(8): p. 2092-103.
103.Gascoigne, K.E. and S.S. Taylor, How do anti-mitotic drugs kill cancer cells? J Cell Sci, 2009. 122(Pt 15): p. 2579-85.
104.Sasaki, K., et al., Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer, 2010. 10(1): p. 370.
105.Schnerch, D., et al., Cell cycle control in acute myeloid leukemia. Am J Cancer Res, 2012. 2(5): p. 508-28.
106.Wang, Y., et al., Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer, 2009. 8: p. 8.
107.Sui, M., et al., Fulvestrant (ICI 182,780) sensitizes breast cancer cells expressing estrogen receptor α to vinblastine and vinorelbine. Breast Cancer Research and Treatment, 2010. 121(2): p. 335-345.
108.Radhakrishnan, V., Y.-S. Song, and D. Thiruvengadam, Romidepsin (depsipeptide) induced cell cycle arrest, apoptosis and histone hyperacetylation in lung carcinoma cells (A549) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Biomedicine & Pharmacotherapy, 2008. 62(2): p. 85-93.
109.Chiu, C.-C., et al., Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells. Cancer Letters, 2005. 223(2): p. 249-258.
110.Hsu, S.C., et al., Ganoderma tsugae extracts inhibit colorectal cancer cell growth via G(2)/M cell cycle arrest. J Ethnopharmacol, 2008. 120(3): p. 394-401.
111.Horng, C.T., et al., Koelreuteria Formosana Extract Induces Growth Inhibition and Cell Death in Human Colon Carcinoma Cells via G2/M Arrest and LC3-II Activation-Dependent Autophagy. Nutr Cancer, 2017. 69(1): p. 44-55.
112.Sun, W.J., et al., Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol, 2017. 127: p. 90-100.
113.Chao, M.W., et al., An oral quinoline derivative, MPT0B392, causes leukemic cells mitotic arrest and overcomes drug resistant cancer cells. Oncotarget, 2017. 8(17): p. 27772-27785.
114.Kim, J.Y., et al., p53 interferes with microtubule-stabilizing agent-induced apoptosis in prostate and colorectal cancer cells. Int J Mol Med, 2013. 31(6): p. 1388-94.
115.Koopman, G., et al., Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 1994. 84(5): p. 1415-20.
116.Vermes, I., C. Haanen, and C. Reutelingsperger, Flow cytometry of apoptotic cell death. J Immunol Methods, 2000. 243(1-2): p. 167-90.
117.Burma, S., et al., ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 2001. 276(45): p. 42462-7.
118.Rogakou, E.P., et al., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 1998. 273(10): p. 5858-68.
119.Keogh, M.C., et al., A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature, 2006. 439(7075): p. 497-501.
120.Edlund, S., et al., Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell, 2003. 14(2): p. 529-44.
121.Chiu, C.C., et al., p38 MAPK and NF-kappaB pathways are involved in naphtho[1,2-b] furan-4,5-dione induced anti-proliferation and apoptosis of human hepatoma cells. Cancer Lett, 2010. 295(1): p. 92-9.
122.Hao, W., et al., Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep, 2015. 5: p. 10336.
123.Jeong, S., et al., Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. BMC Cancer, 2014. 14: p. 481.
124.Nikhil, K., et al., Pterostilbene-isothiocyanate conjugate suppresses growth of prostate cancer cells irrespective of androgen receptor status. PLoS One, 2014. 9(4): p. e93335.
125.McCubrey, J.A., et al., Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017. 8(8): p. 14221-14250.
126.Chen, D., et al., MicroRNA-451 induces epithelial–mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. European journal of cancer, 2014. 50(17): p. 3050-3067.
127.Kang, N., et al., Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem Toxicol, 2014. 67: p. 193-200.
128.Lee, H.J., et al., Flavonoids isolated from Citrus platymamma induce mitochondrial-dependent apoptosis in AGS cells by modulation of the PI3K/AKT and MAPK pathways. Oncol Rep, 2015. 34(3): p. 1517-25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top