跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭光甫
研究生(外文):Guang-Fu Cheng
論文名稱:鄰近耦合微帶洩漏模天線陣列與半寬度微帶洩漏模天線設計
論文名稱(外文):Design of Proximity-Coupled Microstrip Leaky Mode Array and Half-Width Microstrip Leaky Mode Antennas
指導教授:莊晴光
口試委員:許博文林育德陳志強陳國丞陳毓喬
口試日期:2013-11-04
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:68
中文關鍵詞:天線洩漏模
外文關鍵詞:AntennaLeaky mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究包含一鄰近耦合微帶漏模天線陣列,一半微帶線寬度之雙漏模天線,與一反向激發之互耦合半微帶線寬度之漏模天線。
在鄰近耦合微帶漏模天線陣列的研究中,本論文探討短於一真空波長的微帶線之漏模輻射特性並利用鄰近耦合激發方式將其設計為天線陣列單元。同時並設計一天線陣列的匹配負載單元,其負載單元提供了阻抗匹配功能進而使得天線陣列匹配頻寬增加,並抑制在負載端因反射造成的背面旁波束。研究中並建立天線單元的等校傳輸線模型用以預測陣列之輻射效率的等效傳輸線模型。天線陣列在10.525 GHz其增益量測值高達19.1 dBi。而量測的輻射效率在10.525 GHz達到87 %,最高在10.325 GHz可達到 91%。
在半微帶線寬度之雙漏模天線研究中,首先提出一波導結構可存在雙第一高階模(EH1 mode),並利用此波導結構設計出一個具有雙第一高階模之漏模天線。所提出的波導結構包含了兩個不同寬度之半寬度微帶線,因而此波導結構存在兩個第一高階模態,而每一個高階模態的操作頻率可以藉由微帶線的寬度做獨立設計。在模擬與量測結果中兩個模態的隔離度高達20 dB以上。
最後是一個反向激發的互耦合的半寬度互耦合微帶漏模天線研究。首先提出了一個互耦合的半寬度微帶線結構,並研究存在此波導結構之奇、偶模的特性。從研究中發現奇模在操作頻寬與輻射特性皆優於偶模,並實作一個反向激發、互耦合、奇模的半寬度漏模天線。包括饋入結構的天線尺寸為1λ0 ×3.6λ0。最高的天線增益量測值為11.6 dBi,相較於中心頻率有15 %的頻寬,增益平坦度為2.4 dB,輸入反射損耗高於10 dB。

This dissertation presents a proximity-coupled microstrip EH1 mode array, a dual EH1 mode half-width microstrip antenna, and a differentially excited coupled half-width microstrip leaky EH1 mode antenna.
In the design of the proximity-coupled microstrip EH1 mode array, the radiation characteristics of the EH1 mode microstrip line with a length shorter than one free space wavelength are investigated and designed as an array element. The matched radiating-element load is also proposed to provide the wider bandwidth of input impedance matching and the back lobe suppression. Furthermore, the equivalent transmission line model of array element is reported to predict the radiation efficiency of the array. The measured results of the antenna gain and the radiation efficiency are 19.1 dBi and 87% at 10.525 GHz, and the measured maximum radiation efficiency is 91% at 10.325 GHz.
In the studies of dual EH1 mode half-width microstrip antenna design, the guided-wave structure support dual EH1 mode is proposed. A prototype design of dual EH1 mode antenna is also provided. The proposed guided-wave structure consists of two different half-width microstrip lines. Each half-width microstrip line supports an EH1 mode. The operation frequency of these two leaky modes can be designed independently. The isolation of two leaky modes is better than 20 dB over both leaky modes operation bands in simulated and measured results.
Finally, a differentially excited coupled half-width microstrip leaky EH1 mode antenna is presented. The guided-wave structure of coupled half-width microstrip lines are proposed and investigated, showing two leaky modes in the form of even- and odd-symmetry, respectively. Rigorous studies show that the odd-leaky-mode
iv
outperforms the even-mode approach in radiation patterns and bandwidth. Following the rigorous investigation of the modal characteristics of the coupled half-width EH1 mode guided structure, a differentially fed, coupled, odd-leaky-mode, half-width, antenna design of size 1λ0 by 3.6λ0 (including the feed) is reported, showing measured maximum antenna gain of 11.6 dBi, 15% fractional bandwidth, gain flatness of 2.4 dB variation, and input return loss greater than 10 dB.

誌謝 .....................................................................................................................i
中文摘要 ................................................................................................................... ii
Abstract .................................................................................................................. iii
Table of Contents ............................................................................................................... v
List of Figures ................................................................................................................. vii
List of Tables ................................................................................................................. xii
Chapter 1 Introduction ................................................................................................ 1
1.1 Motivations of the Research ...................................................................... 1
1.2 Organization of this Dissertation ............................................................... 4
1.3 Contribution of this Dissertation ................................................................ 6
Chapter 2 Proximity-Coupled Microstrip Leaky Mode Array ................................... 8
2.1 Radiating Characteristics of EH1 Mode in Microstrip Line with Different Lengths ....................................................................................................... 8
2.2 Design of EH1 Mode Antenna Array with Broadside Radiation .............. 12
2.2.1 Array Element Design .............................................................................. 12
2.2.2 Matched Radiating-Element Load ........................................................... 18
2.3 Array Design, Fabrication, Measurement and Discussion....................... 23
Chapter 3 Dual EH1 Mode Microstrip Antenna ........................................................ 28
3.1 Guided-wave Structure for Dual EH1 Mode ............................................ 28
3.2 Prototype Design, Implementation, and Measurement ............................ 32
Chapter 4 Coupled Half-Width Microstrip Leaky-Wave Antenna ........................... 35
4.1 Guided-Wave Structure of Coupled Half-Width Microstrip Leaky-Wave
vi
Antenna .................................................................................................... 35
4.2 Feeding Structures for the Coupled Half-Width Leaky-Wave Antenna .. 43
4.3 Prototype Design, Implementation, and Measurement ............................ 49
Chapter 5 Conclusion ............................................................................................... 56
Reference .................................................................................................................. 59
Publication List ................................................................................................................ 67

[1] H. Ermert, “Guiding and radiation characteristics of planar waveguides,” IEE J. Microwaves, Optics and Acoust., vol. 3, no. 2, pp. 59-62, Mar. 1979.
[2] W. Menzel, “A new travelling-wave antenna in microstrip,” Arch. Elektron. Uebertrag. Tech., vol. 33, no. 4, pp. 137-140, Apr. 1979.
[3] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher-order modes on microstrip line,” 1986 IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, USA, 1986, pp.57-60.
[4] A. A. Oliner, “Leakage from higher modes on microstrip line with application to antenna,” Radio Sci., vol. 22, no.6, pp. 907-912, Nov. 1987.
[5] D. R. Jackson and A. A. Oliner, “A leaky-wave analysis of the high-gain printed antenna configuration,” IEEE Trans. Antennas Propag., vol. 36, no. 7, pp. 905–910, Jul. 1988.
[6] K. A. Michalski and D. Zheng, “On the leaky modes of open microstrip lines,” Microw. Opt. Tech. Lett., vol. 2, no. 1, pp. 6–8, Jan. 1989.
[7] Y.-D. Lin, J.-W. Sheen, and C.-K. C. Tzuang, “Analysis and design of feeding structures for microstrip leaky wave antenna,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 9, pp. 1540–1547, Sep. 1996.
[8] G.-J. Chou and C.-K. C. Tzuang, “Oscillator type active integrated antenna: The leaky mode approach,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2265–2272, Dec. 1996.
[9] C. Luxey and J.-M. Laheurte, “Simple design of dual-beam leaky-wave antennas in microstrips,” Proc. Inst. Elect. Eng.- Microw. Antennas Propag., vol. 144, no. 6, pp. 397–402, Dec. 1997.
[10] T.-L. Chen and Y.-D. Lin, “Aperture-coupled microstrip line leaky wave antenna with broadside mainbeam,” Electron. Lett., vol. 34, no.14, pp. 1366–1367, Jul. 1998.
[11] G.-J. Wang, C. F. Jou, and J.-J. Wu, “A novel two-beam scanning active leaky-wave antenna,” IEEE Trans. Antennas Propag., vol. 47, no. 8, pp. 1314–1317, Aug. 1999.
[12] C.-C. Lin and C.-K. C. Tzuang, “A dual beam micro-CPW leaky-mode antenna,” IEEE Trans. Antennas Propag., vol. 48, no. 2, pp. 310–316, Feb. 2000.
[13] C.-N. Hu and C.-K. C. Tzuang, “Analysis and design of large leaky-mode array employing the coupled-mode approach” IEEE Trans. Microw. Theory Tech.,vol. 49, no. 4, pp. 629–636, Apr. 2001.
61
[14] F. Mesa, D. R. Jackson, and M. J. Freire, “Evolution of leaky modes on printed-circuit lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 94–104, Jan. 2002.
[15] S.-D. Chen and C.-K. C. Tzuang, “Characteristic impedance and propagation of the first higher order microstrip mode in frequency and time domain,” IEEE Trans. Microw. Theory Tech.,vol. 50, no. 5, pp. 1370–1379, May 2002.
[16] Y.-C. Chen, C.-K. Wu, and C.-K. C. Tzuang, “Dual-frequency electric-magnetic-electric microstrip leaky-mode antenna of a single fan beam,” IEEE Trans. Microw. Theory Tech.,vol. 50, no. 12, pp. 2713–2720, Dec. 2002.
[17] K.-C. Chen, Y. Qian, C.-K. C. Tzuang, and T. Itoh, “A periodic radial antenna array with a conical beam,” IEEE Trans. Antennas and Propag.,vol. 51 no. 4, pp. 756-765, Apr. 2003.
[18] W. Hong, T.-L. Chen, C.-Y. Chang, J.-W. Sheen and Y.-D. Lin, “Broadband tapered microstrip leaky-wave antenna,” IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 1922–1928, Aug. 2003.
[19] Tai-Lee Chen and Yu-De Lin, "Dual-beam microstrip leaky-wave array excited by aperture-coupling method," IEEE Trans. Antennas Propag, vol. 51, No. 9, pp.2496-2498, Sep. 2003.
62
[20] P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, and P. Lampariello, “Novel modal properties and relevant scanning behaviors of phased arrays of microstrip leaky-wave antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 12, pp. 3228–3238, Dec. 2003.
[21] W. Hong and Y.-D. Lin, “Single-conductor strip leaky-wave antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 7, pp. 3585–3589, Jul. 2004.
[22] Y.-C. Chen, C.-K. C. Tzuang, T. Itoh, and T. K. Sarkar, “Modal characteristics of planar transmission lines with periodical perturbations:their behaviors in bound, stopband, and radiation regions,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 47–58, Jan. 2005.
[23] Y. Miyama, K. Wakino, Y.-D. Lin, and T. Kitazawa, “Broadband leaky-wave antenna fed with composite right/left-handed transmission line,” IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3585–3589, Nov. 2008.
[24] H. Jiang, R. Penno, K. M. Pasala, L. Kempel, and S. Schneider, “Broadband microstrip leaky wave antenna with inhomogeneous materials,” IEEE Trans. Antennas Propag., vol. 57, no. 5, pp. 1558–1562, May 2009.
[25] J. Liu, D. R. Jackson, and Y. Long, “Propagation wavenumbers for half- and full-width microstrip lines in the EH1 mode” IEEE Trans. Microw. Theory Tech.,vol. 59, no. 12, pp. 3005–3012 Dec. 2011.
63
[26] J. S. Radcliffe, G. A. Thiele, and G. M. Zelinski, “A microstrip leaky wave antenna and its properties” 26th AMTA Symp., St. Mountain, GA, Oct. 2004.
[27] L. Kempel, S. Schneider, T. Kastle, and G. Thiele, “Comparison of two termination schemes for a half-width leaky-wave antenna,” URSI National Radio Science Mtg., Washington DC, Jul. 2005.
[28] M. Corwin, L. Kempel, H. Griffith, and S. Schneider, “Driving point impedance for a linear array of half width leaky-wave antennas,” in Proceeding of IEEE AP-S Int.Symp. Antennas Propagat., Albuquerque, NM, Jul. 2006, pp. 4251–4254.
[29] D. Killips, J. Radcliffe, L. Kempel, and S. Schneider, “Radiation by a linear array of half-width leaky-wave antennas,” ACES Journal, vol. 21, no. 3, pp. 248–255, Nov. 2006.
[30] G. M. Zelinski, G. A. Thiele, M. L. Hastriter, M. J. Havrilla, and A. J. Terzouli, “Half width leaky wave antennas,” IET Microw., Antennas Propag., vol. 1, no. 2, pp. 341–348, Apr. 2007.
[31] Y. Li, Q. Xue, E. K.-N. Yung, and Y. Long, “Quasi microstrip leaky-wave antenna with a two-dimensional beam-scanning capability,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 347–354, Feb. 2009.
64
[32] Y.-L. Chiou, J.-W. Wu, J.-H. Huang, and C. F. Jou, “A novel short length half-width microstrip leaky wave antenna with suppressed back lobes,” Microwave Opt. Technol. Lett., vol. 51, no. 12, pp. 3024–3026, Dec. 2009.
[33] M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 203-206, 2010.
[34] Y. Li, Q. Xue, E. K.-N. Yung, and Y. Long, “ The periodic half-width microstirp leaky-wave antenna with a backward to forward scanning capability,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 963–966, Mar. 2010.
[35] J. A. Hejase, J. Myers, L. Kempel, and P. Chahal, “Design study of electronically steerable half-width microstrip lekay wave antennas,” in Proc. 56th Electron. Compon. Technol. Conf., Jun. 2011, pp. 1348–1353.
[36] Y. Li, Q. Xue, H.-Z. Tan, and Y. Long, “The half-width microstrip leaky wave antenna with the periodic short circuits,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3421–3423, Sep. 2011.
[37] A. Piloto, K. Leahy, B. Flanick, and K. A. Zaki, “Waveguide filters having a layered dielectric structure,” U.S. Patent 5 382 931, Jan. 17, 1995.
65
[38] H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a laminated waveguide,” IEEE Trans. Microw. Theory Tech.,vol. 46, no. 12, pp. 2438–2442, Dec. 1998.
[39] J. Hirokawa and M. Ando, “Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates,” IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 625–630, May 1998.
[40] J. Hirokawa and M. Ando, “Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays,” IEEE Trans. Antennas Propag., vol. 48, no. 11, pp. 1742–1745, Nov. 2000.
[41] D. Deslandes and K. Wu, “Single-substrate integration technique of planar circuits and waveguide filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593–596, Feb. 2003.
[42] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 66–73, Jan. 2005.
[43] B. Liu, W. Hong, Y.-Q. Wang. Q.-H. Lai and K. Wu, “Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microwave Wireless Comp. Lett., vol. 17, no. 1, pp. 22–24, Jan. 2007.
66
[44] J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, “Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 85-88, 2008.
[45] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans.Comp.,Hybrids, Manufact. Tech., vol. 15, pp.483-490, Aug. 1992.
[46] A. A. Oliner, “Leaky-wave antennas,” in Antenna Engineering Handbook, R. C. Johnson, Ed., 3rd ed. New York: McGraw-Hill, 1993, ch.10.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top