1.Chiang, K. Y., The effects of a dragonfly’s pterostigmata on the lift and the modal properties of its wings, in Department of Mechanical Engineering. 2014, National Taiwan University.
2.Zhao, C., G. Steven, and Y. Xie, Evolutionary natural frequency optimization of thin plate bending vibration problems. Structural Optimization, 1996. 11(3-4): p. 244-251.
3.Bendse, M.P. and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988. 71(2): p. 197-224.
4.Bendse, M.P., Optimal shape design as a material distribution problem. Structural Optimization, 1989. 1(4): p. 193-202.
5.Andreassen, E., et al., Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 2011. 43(1): p. 1-16.
6.Sigmund, O., A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim., 2001. 21(2): p. 120-127.
7.Baeck, T. and H.-P. Schwefel, An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1993. 1(1): p. 1-23.
8.Muhlenbein, H., M. Gorgesschleuter, and O. Kramer, Evolution algorithms in combinatorial optimization. Parallel Computing, 1988. 7(1): p. 65-85.
9.Holland, J.H., Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. 1975, Ann Arbor: University of Michigan Press.
10.Goldberg, D.E. and M.P. Samtani. Engineering optimization via genetic algorithm. in Electronic computation. 1986. ASCE.
11.Sandgren, E. and E. Jensen, Topological design of structural components using genetic optimization method. 1990.
12.Jenkins, W., Towards structural optimization via the genetic algorithm. Computers & Structures, 1991. 40(5): p. 1321-1327.
13.Jog, C.S. and R.B. Haber, Stability of finite element models for distributed-parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering, 1996. 130(3): p. 203-226.
14.Jakiela, M.J., et al., Continuum structural topology design with genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2000. 186(2-4): p. 339-356.
15.Chapman, C.D. and M. Jakiela, Genetic algorithm-based structural topology design with compliance and topology simplification considerations. Journal of Mechanical Design, 1996. 118(1): p. 89-98.
16.Huang, C. W., Chen, B. T. and Wu, C. C., Application of Genetic Algorithm in Structural Topology Optimization with Adaptive Mesh. Journal of Advanced Engineering, 2010. 5(4): p. 317-326.
17.Lim, O.K. and J.S. Lee, Structural topology optimization for the natural frequency of a designated mode. KSME International Journal, 2000. 14(3): p. 306-313.
18.Chankong, V. and Y.Y. Haimes, Multiobjective decision making: theory and methodology. 1983: North Holland.
19.Hans, A.E., Multicriteria optimization for highly accurate systems, in Multicriteria Optimization in Engineering and Sciences, W. Stadler, Editor. 1988, Plenum press. p. 309-352.
20.Schaffer, J.D., Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition). 1984, Vanderbilt University. p. 166.
21.Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning. 1989: Addison-Wesley Longman Publishing Co., Inc. 372.
22.Srinivas, N. and K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput., 1994. 2(3): p. 221-248.
23.Zitzler, E., K. Deb, and L. Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 2000. 8(2): p. 173-195.
24.Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002. 6(2): p. 182-197.
25.Knowles, J.D. and D.W. Corne, Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary computation, 2000. 8(2): p. 149-172.
26.Zitzler, E., M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolutionary algorithm. in Eurogen. 2001.
27.Lu, H. and G.G. Yen. Rank-density based multiobjective genetic algorithm. in Evolutionary Computation, 2002. CEC''02. Proceedings of the 2002 Congress on. 2002. IEEE.
28.Tan, K.C., T.H. Lee, and E.F. Khor, Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2001. 5(6): p. 565-588.
29.Yen, G.G. and L. Haiming, Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Transactions on Evolutionary Computation, 2003. 7(3): p. 253-274.
30.Haupt, R.L. and S.E. Haupt, Practical genetic algorithms, ed. Second. 2004: John Wiley & Sons, Inc.
31.Reddy, J.N., An introduction to the finite element method. 2006, New York, NY: McGraw-Hill Higher Education.
32.Melosh, R.J., Basis for derivation of matrices for the direct stiffness method. AIAA Journal, 1963. 1(7): p. 1631-1637.
33.Zienkiewicz, O.C. and Y.K. Cheung, The finite element method for analysis of elastic isotropic and orthotropic slabs. Proceedings of the Institution of Civil Engineers, 1964. 28(4): p. 471-488.
34.林豐澤, 演化式計算上篇:演化式演算法的三種理論模式. 智慧科技與應用統計學報, 2005. 3(1): p. 1-28.35.林豐澤, 演化式計算下篇:基因演算法以及三種應用實例. 智慧科技與應用統計學報, 2005. 3(1): p. 29-56.