|
參考文獻
Aggarwal, S. K., and MacKinnon, R.(1996). Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169-1177.
Ahern, C.A., and Horn, R. (2004). Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol.123, 205–216.
Ahern, C.A., and Horn, R. (2005).Focused electric field across the voltage sensor of potassium channels. Neuron 48,25-29.
Armstrong, C.M. (1981). Sodium channels and gating currents. Physiol. Rev. 61, 644–682.
Auld, V.J., A.L. Goldin, D.S. Krafte, J. Marshall, J.M. Dunn, W.A. Catterall, H.A. Lester, N. Davidson, and R.J. Dunn.(1988). A rat brain Na+ channel α subunit with novel gating properties. Neuron 1:449–461.
Backx, P.H., D.T. Yue, J.H. Lawrence, E. Marban, and G.F. Tomaselli. (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science (Wash. DC). 257:248–251.
Baker, O. S., Larsson, H. P., Mannuzzu, L. M., Isacoff, E. Y (1998) Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 20, 1283-1294.
Barchi, R.L. (1995). Molecular pathology of the skeletal muscle sodium channel. Annu. Rev. Physiol. 57:355–385.
Benitah, J.P., Chen, Z., Balser, J.R., Tomaselli, G.F., Marban, E. (1999) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. J. Neurosci. 19:1577-1585.
Bezanilla, F., Armstrong, C.M.,(1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol.70,549-566.
Cannon, S.C. (1996). Sodium channel defects in myotonia and periodic paralysis. Annu. Rev. Neurosci. 19, 141–164.
Catterall, W.A. (1986). Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985.
Catterall, W.A. (2001). A 3D view of sodium channels. Nature 409,988-991.
Cha, A., Ruben, P.C., George, A.L., Jr., Fujimoto, E., and Bezanilla, F. (1999a). Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22, 73–87.
Cha, A., Snyder, G. E., Selvin, P. R., Bezanilla, F. (1999b) Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809-813.
Chahine, M., A.L. George,Jr., M. Zhou, S.Ji, W. Sun, R.L. Barchi, and R. Horn. (1994). Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron. 12:281-294.
Chanda, B., and F. Bezanilla. (2002). Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120:629–645.
Chen, L.Q., Santarelli, V., Horn, R., and Kallen, R.G. (1996). A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108, 549–556.
Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen,S. L., Chait, B. T.,MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77.
Elinder, F., Mannikko, R., Larsson, H. P. (2001) S4 charges move close to residues in the pore domain during activation in a K channel. J Gen Physiol 118, 1-10.
Gandhi, C. S., Isacoff, E. Y. (2002) Molecular models of voltage sensing. J Gen Physiol 120, 455-463.
Goldin, A.L., Snutch, T., Lubbert, H., Dowsett, A., Marshall, J., Auld, V., Downey, W., Fritz, L.C., Lester, H.A., Dunn, R., Catterall, W.A., and Davidson, N. (1986). Messenger RNA coding for only the α subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 83, 7503–7507.
Gurdon, J. B., Lane, C. D., Woodland, H. R., Marbaix, G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177-182.
Guy, H.R., and Seetharamulu, P. (1986). Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 508, 508–512.
Hartshorne, R.P., and Catterall, W.A. (1981). Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natl. Acad. Sci. USA 78, 4620–4624.
Hartshorne, R.P., Messner, D.J., Coppersmith, J.C., and Catterall, W.A. (1982). The saxitoxin receptor of the sodium channel from rat brain: evidence for two nonidentical beta subunits. J. Biol. Chem. 257, 13888–13891.
Heinemann, S.H., Terlau, H., Stu¨ hmer, W., Imoto, K., and Numa, S. (1992). Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443.
Hille, B. (1992) Ionic channels of excitable membranes, Ed. 2. Sinauer Associates, Sunderland,MA.
Hirschberg, B., Rovner, A., Lieberman, M., and Patlak, J. (1995). Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106, 1053–1068.
Hodgkin, A. L., and Huxley A. F.(1952). A quantitative description of membrane current and its application to induction and excitation in nerve. J Physiol 117,500-544.
Hoffman, E.P., F. Lehmann-Horn, and R. Rüdel.(1995). Overexcited or inactive: ion channels in muscle disease. Cell. 80:681–686.
Holmgren, M., Jurman, M. E., Yellen, G. (1996) N-type inactivation and the S4-S5 region of the Shaker K+ channel. J Gen Physiol 108, 195-206.
Hoshi, T., Zagotta, W. N., Aldrich, R. W.(1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547-56.
Isacoff, E.Y., Jan, Y.N.,and Jan, L.Y.(1991) Putative receptor for the cytoplasmic inactivation gate in the Shaker K channel. Nature 353,86-90.
Isom, L.L., De Jongh, K.S., Patton, D.E., Reber, B.F.X., Offord, J., Charbonneau, H., Walsh, K., Goldin, A.L., and Catterall, W.A. (1992). Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256, 839–842.
Isom, L.L., Ragsdale, D.S., De Jongh, K.S., Westenbroek, R.E., Reber, B.F.X., Scheuer, T., and Catterall, W.A. (1995). Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM-motif. Cell 83, 433–442.
Jerng, H. H., Covarrubias, M. (1997) K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. Biophys J 72, 163-174.
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002a). Crystal structure and mechanism of a calcium-gated potassium channel. Nature.417:515–522.
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002b). The open pore conformation of potassium channels. Nature.417:523–526.
Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., MacKinnon, R. (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33-41.
Jiang, Y., Ruta, V., Chen, J., Lee, A., MacKinnon, R. (2003b) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42-48.
Kellenberger, S., Scheuer, T., and Catterall, W.A. (1996). Movement of the Na+ channel inactivation gate during inactivation. J. Biol. Chem. 271, 30971–30979.
Kuhn, F.J.P, and Greef, N.G.(1999) Movement of voltage sensor S4 in somain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization. J Gen Physiol 114,167-183.
Kuo, C.C.,and Bean, B.P.,(1994) Sodium channels must deactivate to recovery from inactivation. Neuron. 12, 819-829.
Laine, M., Lin, M. C., Bannister, J. P., Silverman, W. R., Mock, A. F., Roux, B.,and Papazian, D. M. (2003) Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467-481.
Lecar, H., and H.P. Larsson. (1997) Theory of S4 motion in voltage-gated channels. Biophys. J. 72,341a.
Liman, E. R., Hess, P., Weaver, F., Koren, G. (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353, 752-756.
Li-Smerin, Y., Hackos, D. H., Swartz, K. J. (2000) alpha-helical structural elements within the voltage-sensing domains of a K(+) channel. J Gen Physiol 115, 33-50.
Liu, Y., Jurman, M. E., Yellen, G..(1996). Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859-867.
Logothetis, D. E., Movahedi, S., Satler, C., Lindpaintner, K., Nadal-Ginard, B. (1992) Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron 8, 531-540.
McCollum, I.J., Vilin, Y.Y., Spackman, E., Fujimoto, E., Ruben, P.C. (2003) Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation. FEBS Lett. 552:163-169.
McPhee, J.C., Ragsdale, D.S., Scheuer, T., and Catterall, W.A. (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc. Natl. Acad. Sci. USA. 91:12346-12350.
McPhee, J.C., Ragsdale, D.S., Scheuer, T., and Catterall, W.A. (1995). A critical role for transmembrane segment IVS6 of the sodium channel α subunit in fast inactivation. J. Biol. Chem. 270, 12025–12034.
McPhee, J.C., Ragsdale, D., Scheuer, T., and Catterall, W.A. (1998). A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel α subunit in fast inactivation. J. Biol. Chem. 273, 1121–1129.
Mitrovic, N., George, A.L. Jr., Horn, R. (2000) Role of domain 4 in sodium channel slow inactivation. J. Gen. Physiol. 115:707-718.
Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127.
Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188-192.
O’Reilly, J.P., Wang, S.Y., Wang, G.K.(2000) A point mutation in domain 4- segment 6 of the skeletal muscle sodium channel produces an atypical inactivation state. Biophys. J. 78:773-784.
O’Reilly, J.P., Wang, S.Y., Wang, G.K.(2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Nav1.4 sodium channels. Biophys. J. 81:2100-2111.
Papazian, D. M., Timpe, L. C., Jan, Y. N., Jan, L. Y. (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305-310.
Papazian, D. M., Shao, X. M., Seoh, S. A., Mock, A. F., Huang, Y., Wainstock, D. H. (1995) Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293-1301.
Scheuer, T., V.J. Auld, S. Boyd, J. Offord, R. Dunn, and W.A. Catterall. (1990). Functional properties of rat brain sodium channels expressed in a somatic cell line. Science (Wash. DC). 247:854–858.
Schonherr, R., Mannuzzu, L. M., Isacoff, E. Y., Heinemann, S. H. (2002) Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel. Neuron 35, 935-949.
Schoppa, N. E., McCormack, K., Tanouye, M. A., Sigworth, F. J. (1992) The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712-5.
Seoh, S. A., Sigg, D., Papazian, D. M., Bezanilla, F. (1996) Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159-1167.
Shih, T. M., Goldin, A. L. (1997) Topology of the Shaker potassium channel probed with hydrophilic epitope insertions. J Cell Biol 136, 1037-1045.
Smith-Maxwell, C. J., Ledwell, J. L., Aldrich, R. W. (1998) Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J Gen Physiol 111, 421-39.
Smith, M.R., and Goldin, A.L. (1997). Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys. J. 73, 1885–1895.
Sokolov, S., Scheuer,T., and Catterall, W.A.(2005) Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47,183-189.
Starace, D. M., Bezanilla, F. (2001) Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol 117, 469-90.
Starace, D. M., Bezanilla, F. (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548-453.
Striessnig, J., Glossmann, H., and Catterall, W.A. (1990). Identification of a phenylalkylamine binding region within the a1 subunit of skeletal muscle Ca2+ channels. Proc. Natl. Acad. Sci. USA 87, 9108–9112.
Stühmer, W., F. Conti, H. Suzuki, X. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature (Lond.). 339:597–603.
Terlau, H., S.H. Heinemann, W. Stühmer, M. Pusch, F. Conti, K. Imoto, and S. Numa. (1991). Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293:93–96.
Tiwari-Woodruff, S. K., Schulteis, C. T., Mock, A. F., Papazian, D. M. (1997) Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J 72, 1489-1500.
Tiwari-Woodruff, S. K., Lin, M. A., Schulteis, C. T., Papazian, D. M. (2000) Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol 115, 123-138.
Tombola, F., Pathak, M.M., and Isacoff, E.Y. (2005). Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388.
Vedantham, V., Cannon, S.C. (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na+ channels. Biophys. J. 78:2943-2958.
Vilin, Y.Y., Fujimoto, E., Ruben, P.C. (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys. J. 80:2221-2230.
West, J. W., D.E. Patton, T. Scheuer, Y. Wang, A.L. Goldin, and W.A. Catterall. (1992). A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc. Natl. Acad. Sci. USA. 89:10910–10914.
Yang, N., and Horn, R. (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213-218.
Yang, N., George, A. L., Jr., and Horn, R.(1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113-22.
Yang, Y.C., and Kuo, C.C. (2003) The position of the fourth segment of domain 4 determines status of the inactivation gate in Na+ channels. J. Neurosci. 23,4922-4930.
Yang, Y.C., and Kuo, C.C. (2005) An inactivation stabilizer of the Na+ channel Acts as an opportunistic pore blocker modulated by external Na+. J. Gen. Physiol. 125,465-481.
Yusaf, S. P., Wray, D., Sivaprasadarao, A. (1996) Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch 433, 91-97.
Zagotta, W. N., Aldrich, R. W. (1990) Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol 95, 29-60.
|