跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇明銓
研究生(外文):Su, Ming-Chiuan
論文名稱:應用於序列傳輸系統之突發式時脈資料回復電路與全數位式展頻時脈產生器
論文名稱(外文):Burst Mode Clock/Data Recovery and All-Digital Spread-Spectrum Clock Generator for Serial Link System
指導教授:周世傑周世傑引用關係陳巍仁陳巍仁引用關係
指導教授(外文):Jou, Shyh-JyeChen, Wei-Zen
口試委員:鄭國興李致毅楊清淵洪浩喬吳仁銘
口試委員(外文):Cheng, Kuo-HsingLee, JriYang, Ching-YuanHong, Hao-ChiaoWu, Jen-Ming
口試日期:2014-12-04
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:103
中文關鍵詞:全數位鎖相迴路突發式時脈資料回復電路數位控制震盪器展頻時脈產生器
外文關鍵詞:All digital phase locked loopBurst mode clock/data recoveryDigitally controlled oscillatorSpread spectrum clock generator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:645
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代製程科技進展往小尺寸以及低功耗的發展,更能滿足不同的系統單晶片內部大量的運算以及彼此間的高速資料傳輸。高速傳輸介面規格則朝向每秒幾十億位元的低抖動及符合能源效益(~1皮焦耳每位元)的傳輸速度來進化。在資料傳輸器端則利用展頻時脈產生器來抑制電磁干擾。數位控制振盪器整合於全數位鎖相迴路並搭配三角波形量變曲線產生器與和差積分調變器能建立全數位式展頻時脈產生器,有著易於晶片整合、較小面積以及較優的抗製程、電壓、溫度漂移的頻率可調範圍。在資料接受器端為了節省資料傳輸頻寬,需在幾十至幾百個位元時間回復突發傳入的大量資料。時脈與資料回復電路藉由使用閘式控制振盪器可在幾個位元時間內將回復的資料與時脈的相位校直來實現快速同步響應。
一個具低抖動、多相位差動輸出以及更為線性調整的數位控制振盪器被提出。此數位控制振盪器由四級差動延遲元件組成,可在較寬的頻率範圍擁有更為線性的調整。被提出的差動延遲元件設計主要由標準元件庫的邏輯元件以及電壓控制電容組成。利用和差積分調變實現抖動內插組合可改進數位控制振盪器的平均頻率解析度。在25億赫茲的載波上量測到的方均根抖動值與峰對峰抖動值分別為2.827皮秒與29皮秒。在1.2伏特供壓下消耗6毫瓦。實驗原型使用65奈米互補式金氧半導體製程,晶片面積為156×92平方微米。
展頻時脈的方法利用調變除頻除數達成在頻譜上以合成頻率為中心做小部分頻率展延。因此,在特定頻率被發射出的峰值能量被降低而能減輕電磁干擾。被提出的全數位式展頻時脈產生器以累加器為主的全數位鎖相迴路搭配和差積分條便器構成,並參考V-by-One顯示介面規格設計。全數位鎖相迴路用於合成三組頻段(2376百萬赫茲、740百萬赫茲及594百萬赫茲)搭配除頻器可滿足V-by-One顯示介面從62.5百萬赫茲到2376百萬赫茲的規格要求。從SIMULINK行為模擬顯示被抑制的電磁干擾值在2376百萬赫茲、740百萬赫茲以及594百萬赫茲的頻段上分別為19.95分貝、13.99分貝以及14.65分貝。使用40奈米互補式金氧半導體製程,此展頻時脈產生器的數位合成面積與在0.9伏特供壓下的功率消耗分別為4230平方微米與0.72毫瓦。使用28奈米互補式金氧半導體製程,應用於此展頻時脈產生器的頻段可選式數位控制振盪器的使用面積為1961平方微米以及在0.9伏特供壓下消耗3.34毫瓦。
一個突發模式時脈與資料回復電路應用於每秒百億位元被動式光通訊網路被提出。此電路的設計問題提出包含避免閘式控制振盪器的頻率不匹配、抖動容忍能力、較短鎖定時間以及能源效益的關切。此被提出的突發模式時脈與資料回復電路可在資料閘控階段與相位追鎖模式之間重新裝配以達成瞬間的相位鎖定且具備抖動抑制能力。鎖定頻率偵測器可確保一開始在頻率鎖定階段的準確度到百分之0.01875的誤差內。而被提出的具選擇性閘式壓控振盪器可傳遞輸入資料相位邊緣到閘式壓控振盪器的合適控制階級,使此一階級的時脈相位邊緣最為靠近輸入資料的相位邊緣。當此具選擇性閘式壓控振盪器穩定之後,輸入資料的相位轉折邊緣將與此選擇性閘式壓控振盪器在五分之一的輸出時脈相位校直。經過資料閘控過程之後,此突發模式時脈與資料回復電路重新裝配成一個二階傳統式時脈與資料回復電路,用於抑制輸入資料的抖動而不會遲滯鎖定行為。此突發模式時脈與資料回復電路藉由包含具選擇性閘式壓控振盪器操作在五分之一的資料速率且實現一比五同步解多工,可達成1.24皮焦耳每位元的高能源使用效率。在百億位元傳輸速率的資料上加入4百萬赫茲0.22峰對峰值單位長度的抖動量,此回復時脈的抖動在20億赫茲頻率上的方均根值為2.94皮秒。此實作模型使用55奈米互補式金氧半導體製程,核心面積只佔有0.03平方毫米。其消耗功率在1伏特供壓下為12.4毫瓦。

In modern times, the process technology node has advanced toward small feature size with low power consumption and high operation speed to per the demand on the enormous amount of data computation and communication among individual system-on-chip (SoC). The high-speed interface specifications have evolved toward multi-Gbps data rate as well as low-jitter and energy-efficient (~1pJ/bit) concerns. The transmitter (TX) utilizes spread-spectrum clock generator for the purpose of suppressing the electro-magnetic interference (EMI). The digitally-controlled oscillator (DCO) merged in the all-digital phase-locked loop (ADPLL) combining the triangular profile generator and ΣΔ modulator can build the all-digital spread-spectrum clock generator (SSCG) for the purpose of suppressing the electro-magnetic interference (EMI) with the advantages of the ease of chip integration, small feature size and PVT-tolerant frequency tuning range. For the receiver (RX), the burst-in data needs to be recovered within tens to hundreds of bit-times to save the bandwidth usage so that the big data can be transferred accordingly. By employing the gated-oscillator within the clock and data recovery (CDR) circuit, the recovered data and clock’s phases can be aligned within a few of bit-times to realize fast phase synchronization response.
A low-jitter digitally-controlled oscillator (DCO) with multi-phase differential outputs and good linearity is presented. The DCO is composed of four differential delay cells, and can achieve linear tuning over a wide frequency range. The proposed fully differential delay cell comprises logic cells in standard library and varactors. The dithering scheme employing the ΣΔ modulation can enhance the average DCO’s frequency resolution. The measured rms jitter and pk-pk jitter from 2.5GHz carrier are 2.827ps and 29ps respectively. The power consumption is 6mW from a 1.2V supply. An experimental prototype is designed using 65nm CMOS technology, and the chip area is 156μm×92μm2.
Spread-spectrum clocking method modulates the divider ration to spread the synthesized clock’s center frequency over a small portion on the spectrum. Therefore, the emitted peak energy at the discrete synthesized frequency can be reduced to alleviate the EMI effect. Through an accumulator-based ADPLL using ΣΔ modulator, the proposed all-digital SSCG can be built. The proposed SSCG uses V-by-One display specification for reference. The ADPLL can synthesize the three frequency bands (2376MHz, 740MHz, and 594MHz) accompanied with dividers to cover from 62.5MHz to 2376MHz frequency bands requirement. The SIMULINK behavioral simulation results show that the suppressed EMI amounts are 19.95dB, 13.99dB, and 14.65dB for the 2376MHz, 740MHz, and 594MHz frequency, respectively. The synthesized area and power of the SSCG’s digital components are 4230μm2 and 0.72mW from 0.9V supply in the 40nm CMOS process node. The band-selection DCO merged in this SSCG occupies area of 1961μm2 and dissipates 3.34mW from 0.9V supply in the 28nm CMOS process node.
A burst mode clock and data recovery (BMCDR) circuit for 10Gbps passive optical network (10G-PON) is presented. The design issues including the prevention of the gated-oscillator’s frequency mismatch, the jitter tolerance ability, the short lock-in time and energy-efficient concern have been addressed. The proposed BMCDR is reconfigurable between data gating mode and phase tracking mode to achieve instantaneously phase-locked with jitter suppression capability. The lock detector can guarantee the frequency accuracy of 0.01875% in the frequency initialization locked state. The proposed selectively gating voltage controlled oscillator (SGVCO) can pass the input data edge to the proper gating stage of the SGVCO that has the closest transition phases with it. When the SGVCO is settled, the input data transition edges are aligned with the SGVCO’s output phases at 1/5-rate of input data. After data gating process, the proposed BMCDR reconfigures as a 2nd-order conventional CDR loop to suppress input stressed data without retarding the locking behavior. By incorporating selectively gating VCO (SGVCO), the BMCDR can operate at 1/5-rate and accomplishes 1:5 demultiplexing with a high energy efficiency of 1.24pJ/bit. With a 4MHz, 0.22UIpp jitter stressed input data at 10Gbps, the recovered clock jitter at 2GHz is 2.94psrms. The prototype is fabricated using 55nm CMOS technology. The core area is 0.03mm2 only. It dissipates 12.4mW from 1V supply.

Chapter 1 Introduction 1
1.1 Digitally-Controlled Oscillator Overview 3
1.2 Spread Spectrum Clock Generator Overview 4
1.3 Clock and Data Recovery Overview 5
1.4 Motivation 8
1.5 Organization 9
Chapter 2 Digitally-Controlled Oscillator 11
2.1 Differential Ring-Type DCO with Tri-Inverter 11
2.2 Multi-Phase Differential Ring-Type DCO with Varactor Array 14
2.3 Phase Noise Analysis 21
2.4 Experimental Results 23
Chapter 3 Spread Spectrum Clock Generator 29
3.1 Introduction of V-by-One System 33
3.2 Timing Jitter Issue 34
3.3 Proposed All-Digital SSCG Architecture 36
3.4 Triangular Waveform Profile Generator 39
3.5 ΣΔ Modulator 40
3.6 Band Selection Digitally-Controlled Oscillator 40
3.7 Experimental Results 46
Chapter 4 Burst Mode Clock and Data Recovery 55
4.1 10G-PON Specifications 58
4.2 BMCDR Issues and Proposed Solutions 60
4.3 System Architecture 65
4.4 Circuit Implementation 67
4.4.1 Lock Detector 67
4.4.2 Reconfigurable Loop Filter 69
4.4.3 Selectively Gating Voltage Controlled Oscillator 72
4.4.4 1/5-Rate Phase Detector 78
4.4.5 Dual Mode Loop Filter 80
4.5 Experimental Results 83
Chapter 5 Conclusions 93
Bibliography 95

[1] T. Anand, A. Elshazly, M. Talegaonkar, B. Toung, and P. K. Hanumolu, “A 5 Gb/s, 10 ns Power-On-Time, 36 μW Off-State Power, Fast Power-On Transmitter for Energy Proportional Links,” IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2243-2258, Oct. 2014.
[2] Q. B. Sudreau, J. B. Begueret, O. Mazouffre, M. Pignol, L. Baguena, C. Neveu, Y. Deval, and T. Taris, “SiGe Clock and Data Recovery System Based on Injection-Locked Oscillator for 100 Gbit/s Serial Data Link,” IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 1895-1904, Sep. 2014.
[3] J. Y. Lee, J. H. Yoon, and H. M. Bae, “A 10-Gb/s CDR with an Adaptive Optimum Loop-Bandwidth Calibrator for Serial Communication Links,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 61, no. 8, pp. 2466-2472, Aug. 2014.
[4] W. Wang, and J. F. Buckwalter, “A 10-Gb/s, 107-mW Double-Edge Pulsewidth Modulation Tranceiver,,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 61, no. 4, pp. 1068-1080, Apr. 2014.
[5] H. Liu, Y. Wang, C. Xu, X. Chen, L. Lin, Y. Yu, W. Wang, A. Majumder, G. Chui, D. Brown, and A. Fang, “A 5-Gb/s Serial-Link Redriver with Adaptive Equalizer and Transmitter Swing Enhancement,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 61, no. 4, pp. 1001-1011, Apr. 2014.
[6] G. Shu, S. Saxena, W. S. Choi, M. Talegaonkar, R. Inti, A. Elshazly, B. Young, and P. K. Hanumolu, “A Reference-Less Clock and Data Recovery Circuit Using Phase-Rotating Phase-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 1036-1047, Apr. 2014.
[7] J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, J. M. Wilson, and C. T. Gray, “A 0.54 pJ/b 20 Gb/s Ground-Referenced Single-Ended Short-Reach Serial Link in 28 nm CMOS for Advanced Packing Applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3206-3218, Dec. 2013.
[8] N. Kalantari, and J. F. Buckwalter, “A Multichannel Serial Link Receiver with Dual-Loop Clock-and-Data Recovery and Channel Equalization,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 60, no. 11, pp. 2920-2931, Nov. 2013.
[9] T. Ali, R. Drost, R. Ho, and C. K. K. Yang, “A 100+ Meter 12 Gb/s/Lane Copper Cable Link Based on Clock-Forwarding,” IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1085-1098, Apr. 2013.
[10] J. W. Jung, and B. Razavi, “A 25-Gb/s 5-mW CMOS CDR/Deserializer,” IEEE Journal of Solid-State Circuits, vol. 48, no. 3, pp. 684-697, Mar. 2013.
[11] J. F. Bulzacchelli, C. Menolfi, T. J. Beukema, D. W. Storaska, J. Hertle, D. R. Hanson, P. H. Hsieh, S. V. Rylov, D. Furrer, D. Gardellini, A. Prati, T. Morf, V. Sharma, R. Kelkar, H. A. Ainspan, W. R. Kelly, L. R. Chieco, G. A. Ritter, J. A. Sorice, J. D. Garlett, R. Callan, M. Brandli, P. Buchmann, M. Kossel, T. toifl, and D. J. Friedman, “A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Tranceiver in 32-nm SOI CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3232-3248, Dec. 2012.
[12] K. Hu, R. Bai, T. Jiang, C. Ma, A. Ragab, S. Palermo, and P. Y. Chiang, “0.16-0.25 pJ/bit, 8 Gb/s Near-Threshold Serial Link Receiver with Super-Harmonic Injection-Locking,” IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1842-1852, Aug. 2012.
[13] A. P. van der Wel, and G. W. den Besten, “A 1.2-6 Gb/s, 4.2 pJ/Bit Clock &; Data Recovery Circuit With High Jitter Tolerance in 0.14 μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1768-1775, Jul. 2012.
[14] H. Song, D. S. Kim, D. H. Oh, S. Kim and D. K. Jeong, “A 1.0-4.0-Gb/s All-Digital CDR With 1.0-ps Period Resolution DCO and Adaptive Proportional Gain Control,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 424-434, Feb. 2011.
[15] S. Drago, D. M. W. Leenaerts, B. Nauta, F. Sebastiano, K. A. A. Makinwa and L. J. Breems, “A 200μA Duty-Cycled PLL for Wireless Sensor Nodes in 65nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1305-1315, Jul. 2010.
[16] X. Chen, J. Yang, and L. X. Shi, “A Fast Locking All-digital Phase-locked Loop via Feed-forward Compensation Technique,” IEEE Transaction on Very Large Scale Integration (VLSI) System, vol. 19, no. 5, pp. 857–868, May 2011.
[17] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 42–51, Jan. 2008.
[18] N. August, H. J. Lee, M. Vandepas and R. Parker, “A TDC-less ADPLL with 200-to-3200MHz Range and 3mW Power Dissipation for Mobile SoC Clocking in 22nm CMOS,” in IEEE ISSCC Digest of Technical Papers, Feb. 2012.
[19] S. Y. Yang, W. Z. Chen, and T. Y. Liu, “A 7.1mW, 10GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[20] L. Dai, “A Low Phase Noise CMOS Ring Oscillator with Differential Control and Quadrature Outputs,” in IEEE ASIC/SOC Conference, Sep. 2001, pp. 134-138.
[21] E. H. Chen, R. Yousry, and C. K. K. Yang, “Power Optimized ADC-Based Serial Link Receiver,” IEEE Journal of Solid-State Circuits, vol. 47, no. 4, pp. 938–951, Apr. 2012.
[22] W. C. Liu, F. C. Yeh, T. C. Wei, Y. S Huang, T. Y. Liu, S. J. Huang, C. D. Chan, S. J. Jou and S. G Chen, “A SC/HIS Dual-Mode Baseband Receiver with Frequency-Domain Equalizer for IEEE 802.15.3c,” in IEEE ISCAS Conference, May 2013.
[23] W. Grollitsch, R. Nonis, and N. Da Dalt, “A 1.4psrms-Period-Jitter TDC-Less Fractional-N Digital PLL with Digitally Controlled Ring Oscillator in 65nm CMOS,” in IEEE ISSCC Digest of Technical Papers, Feb. 2010, pp 478-480.
[24] G. Li, and E, Afshari, “A Low-Phase-Noise Multi-Phase Oscillator Based on Left-Handed LC-Ring,” IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1822–1833, Sep. 2010.
[25] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops,” IEEE Transaction on Circuits and Systems-II: Express Briefs, vol. 56, no. 2, pp. 117-121, Feb 2009.
[26] R. B. Staszewski, and P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS, Wiley, 2006.
[27] T. Kawamoto, M. Suzuki, and T. Noto, “1.9-ps jitter, 10.0-dBm-EMI Reduction Spread-Spectrum Clock Generator with Autocalibration VCO Technique for Serial-ATA Application,” IEEE Transaction on Very Large Scale Integration (VLSI) System, vol. 22, no. 5, pp. 1118-1126, May. 2014.
[28] I. T. Lee, S. H. Ku, and I. S. Liu, “An All-Digital Spread-Spectrum Clock Generator with Self-Calibrated Bandwidth,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 60, no. 11, pp. 2813-2822, Nov. 2013.
[29] S. Hwang, M. Y. Song, Y. H. Kwak, I. Jung, and C. Kim, “A 3.5 GHz Spread-Spectrum Clock Generator with a Memoryless Newton-Raphson Modulation Profile,” IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1199-1208, May 2012.
[30] K. H. Cheng, C. L. Hung, and C. H. Chang, “A 0.77 ps RMS Jitter 6-GHz Spread-Spectrum Clock Generator Using a Compensated Phase-Rotating Technique,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1198-1213, May 2011.
[31] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz Serial ATA Spread-Spectrum Clock Generator Employing a Chaotic PAM Modulation,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 60, no. 57, pp. 2577-2587, Oct. 2010.
[32] C. Y. Yang, C. H. Chang, and W. G. Wong, “A Δ-Σ PLL-Based Spread-Spectrum Clock Generator with a Ditherless Fractional Topology,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 56, no. 1, pp. 51-59, Jan. 2009.
[33] J. Y. Chang and S. I. Liu, "A Phase-Locked Loop with Background Leakage Current Compensation," IEEE Transaction on Circuits and Systems-II: Express Briefs, vol. 57, pp. 666-670, Sept. 2010.
[34] C. C. Hung and S. I. Liu, “A Leakage-Compensated PLL in 65-nm CMOS Technology,” IEEE Transaction on Circuits and Systems-II: Express Briefs, vol. 56, no. 7, pp. 525–529, Jul. 2009.
[35] C. C. Hung and S. I. Liu, “A Leakage-Suppression Technique for Phase-Locked Systems in 65 nm CMOS,” in IEEE ISSCC Digest of Technical Papers, pp. 400–401, Feb. 2009.
[36] H.-J. Hsu and S.-Y. Huang, “A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-Based Locking Scheme,” IEEE Transaction on Very Large Scale Integration (VLSI) System, vol. 19, no. 1, pp. 165–170, Jan. 2011
[37] P.-Y. Chao, C.-W. Tzeng, S.-Y. Huang, C.-C. Weng, and S.-C. Fang, “Process-Resilient Low-Jitter All-Digital PLL via Smooth Code-Jumping,” IEEE Transaction on Very Large Scale Integration (VLSI) System, vol. 19, no. 1, pp. 165–170, Jan. 2011
[38] C.-C. Chung and C.-Y. Lee, "An All-Digital Phase-Locked Loop for High-Speed Clock Generation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp.347-351, Feb. 2003.
[39] J. A. Tierno, A.V. Rylyakov, D.J. Friedman, "A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI," IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp.42-51, Jan. 2008.
[40] K.-H., Cheng, J.-C. Liu, and H.-Y. Huang, “A 0.6-V 800-MHz All-Digital Phase-Locked Loop with a Digital Supply Regulator,” IEEE Transaction on Circuits and Systems-II: Express Briefs, vol. 59, no. 12, Dec 2012.
[41] C.-T. Wu, W.-C. Shen, W. Wang, and A.-Y. Wu, “A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm,” IEEE Transaction on Circuits and Systems-II: Express Briefs, vol. 57, no. 6, pp. 430–434, Jun. 2010.
[42] S. Y. Liu and S. I. Liu, “A 1.5 GHz All-Digital Spread-Spectrum Clock Generator,” IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp.3111-3119, Nov. 2009.
[43] D. D. Caro, C. A. Romani, N. Petra, A. G. M. Strollo and C. Parrella, “A 1.27 GHz, All-Digital Spread-Spectrum Clock Generator/Synthesizer in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp.1048-1060, May 2010.
[44] N. August, H. J. Lin, M. Vandepas, and R. Parker, “A TDC-Less ADPLL with 200-to-3200MHz Range and 3mW Power Dissipation for Mobile SoC Clocking in 22nm CMOS”, in IEEE ISSCC Digest of Technical Papers, Feb. 2012.
[45] J. Terada, K. Nishimura, S. Kimura, H. Katsurai, N. Yoshimoto, and Y. Ohtomo, “A 10.3 Gb/s Burst-Mode CDR using a ΔΣ DAC,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2921-2928, Dec. 2008.
[46] C. F. Liang and S. I. Liu, “A 20/10/5/2.5Gbps Power-Scaling Burst-Mode CDR Using GVCO/Div2/DFF Tri-mode Cells,” in IEEE ISSCC Digest of Technical Papers, Feb. 2008.
[47] S. L. J. Gierkink, “A 2.5 Gb/s Run-Length-Tolerant Burst-Mode CDR Based on a 1/8th-Rate Dual Pulse Ring Oscillator,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1763-1771, Aug. 2008.
[48] Y. H. Chen and W. Z. Chen, “A 0.6-7 Gbps, 1/7 Rate, Burst Mode Clock and Data Recovery Circuit and Demultiplexer,” in IEEE Radio Frequency Integrated Circuits Symposium, pp. 531-534, 2012.
[49] B. Abiri, R. Shivnaraine, A. Sheikholeslami, H. Tamura, M. and Kibune, “A 1-to-6Gb/s Phase-Interpolator-Based Burst-Mode CDR in 65nm CMOS,” in IEEE ISSCC Digest of Technical Papers, pp. 154-155, 2011.
[50] K. Maruko, T. Sugioka, H. Hayashi, Z. Zhou, Y. Tsukuda, Y. Yagishita, H. Konishi, T. Ogata, H. Owa, T. Niki, K. Konda, M. Sato, H. Shiroshita, T. Ogura, T. Aoki, H, Kihara, and S. Tanaka, “A 1.296-to-5.184Gb/s Transceiver with 2.4mW(Gb/s) Burst-Mode CDR Using Dual-Edge Injection-Locked Oscillator,” in IEEE ISSCC Digest of Technical Papers, pp. 364-365, 2010.
[51] M. Banu and A. Dunlop, “A 660 Mb/s CMOS clock and data recovery circuit with instantaneous locking for NRZ data and burst-mode transmission,” in IEEE ISSCC Digest of Technical Papers, pp. 102-103, 1993.
[52] C. F. Liang, S. C. Hwu and S. I. Liu, “A 10Gbps Burst-Mode CDR Circuit in 0.18µm CMOS,” in IEEE Custom Integrated Circuits Conferenc(CICC)e, pp. 599-602, 2006.
[53] M. Nogawa, K. Nishimura, S. Kimura, T. Yoshida, T. Kawamura, M. Togashi, K. Kumozaki, and Y. Ohtomo, “A 10 Gb/s burst-mode CDR IC in 0.13μm CMOS,” in IEEE ISSCC Digest of Technical Papers, pp. 228–229, 2005.
[54] J. Lee and M. Liu, “A 20-Gb/s Burst-Mode Clock and Data Recovery Circuit Using Injection-Locking Technique,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 619-630, March 2008.
[55] C. F. Liang, H. L. Chu and S. I. Liu, “10-Gb/s Inductorless CDRs With Frequency Calibration,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 55, no. 9, pp. 2514-2524, Oct. 2008.
[56] W. S. Choi, T. Anand, G. Shu, and P. K. Hanumolu, “A Fast Power-on 2.2Gb/s Burst-mode Digital CDR with Programmable Input Jitter Filtering,” in IEEE Symposium on VLSI Circuits, pp. 280-281, June 2013.
[57] W. Y. Lee, K. D. Hwang, and L. S. Kim, “A 5.4/2.7/1.62-Gb/s Receiver for DisplayPort Version 1.2 With Multi-Rate Operation Scheme,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 59, no. 12, pp. 2858-2866, Dec. 2012.
[58] S. K. Lee, B. Kim, H. J. Park, and J. Y. Sim, “A 5Gb/s Single-Ended Parallel Receiver With Adaptive Cross-talk-Induced Jitter Cancellation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2118-2127, Sep. 2013.
[59] M. S. Chen, Y. N. Shih, C. L. Lin, H. W. Hung, and J. Lee, “A Fully-Integrated 40-Gb/s Transceiver in 65-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 627-640, March 2012.
[60] Y. H. Kwak, Y. Kim, S. Hwang, and C. Kim, “A 20 Gb/s Clock and Data Recovery With a Ping-Pong Delay Line for Unlimited Phase Shifting in 65 nm CMOS Process,” IEEE Journal of Solid-State Circuits, vol. 60, no. 2, pp. 303-313, Feb. 2013.
[61] H. J. Jeon, R. Kulkarni, Y. C. Lo, J. Kim, and J. S. Martinez, “A Bang-Bang Clock and Data Recovery Using Mixed Mode Adaptive Loop Gain Strategy,” IEEE Journal of Solid-State Circuits, vol. 48, no. 6, pp. 1398-1415, June 2013.
[62] G. Shu, S. Saxena, W. S. Choi, M. Talegaonkar, R. Inti, A. Elshazly, B. Young, and P. K. Hanumolu, “A 5Gb/s 2.6mW/Gb/s Reference-less Half-Rate PRPLL-based Digital CDR,” in IEEE Symposium on VLSI Circuits, pp. 278-279, June 2013.
[63] I. A. Young, J. K. Greason, and K. L. Wong, “A PLL Clock Generator with 5 to 110 MHz of Lock Range for Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 27, no. 11, pp. 1599-1607, Nov. 1992.
[64] 10-Gigabit-Capable Passive Optical Networks (XG-PON): Physical Media Dependent (PMD) Layer Specification, ITU-T G.987.2 (2010).
[65] J. Lee, K. S. Kundert, and B. Razavi, “Analysis and Modeling of Bang-Bang Clock and Data Recovery,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1571-1580, Sep. 2004.
[66] M. C. Su, W.-Z. Chen, P. S. Wu, Y. H. Chen, C. C. Lee and S. J. Jou, “A 10Gbps, 1.24pJ/bit, Burst-Mode Clock and Data Recovery with Jitter Suppression,” in IEEE Custom Integrated Circuits Conference(CICC), Sep. 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊