跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 15:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白有立
研究生(外文):Yu Li Pai
論文名稱:以旋轉塗佈法製備Nafion/氧化石墨烯奈米層複合膜材應用於直接甲酸與直接醇類燃料電池之研究
論文名稱(外文):Preparation of Nafion/Graphene Oxide Nano-Sheets Composite Membrane by Spin Coating Method for Direct Formic Acid and Alcohol Fuel Cells
指導教授:呂幸江
指導教授(外文):S. J. Lue
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:151
中文關鍵詞:氧化石墨烯複合膜材旋轉塗佈法直接甲酸燃料電池
外文關鍵詞:Graphene oxideNafionComposite membraneSpin coatingDirect formic acid fuel cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:1
目錄
指導教授推薦書
口試委員會審定書
誌謝......iii
摘要......iv
Abstract......v
目錄......vii
圖目錄......xi
表目錄......xv
第一章. 前言......1
第二章. 文獻回顧......3
2.1直接甲酸燃料電池(DFAFC)介紹......3
2.1.1 DFAFC 電池性能探討......7
2.1.2 Pd 觸媒對DFAFC 電池性能的影響......10
2.1.3 Pd 觸媒於陽極下的觸媒毒化與活性衰退......11
2.2石墨烯與氧化石墨烯介紹......14
2.2.1 GO於燃料電池的應用及電池性能探討......16
2.3複合膜材之進料滲透阻隔預測模型......19
2.4觸媒層的探討......22
2.4.1觸媒層內Nafion 接著劑的優量化......23
2.4.2不同觸媒含量的影響......25
2.5氣體擴散層電極製備方式......29
2.6研究動機與目的......32
第三章. 實驗材料與方法......33
3.1 實驗藥品與材料......33
3.2 實驗設備......35
3.3 Graphene oxide(GO)的合成製備......37
3.4 Nafion前處理......40
3.5 Nafion/GO 複合膜材之製備......41
3.5.1 浸漬塗佈製程......41
3.5.2 旋轉塗佈製程......42
3.6儀器分析與操作條件......44
3.7 Nafion膜材性質分析......45
3.7.1 吸水率及膨潤度......45
3.7.2 擴散係數及離子交換容積......46
3.7.3離子導電度測試......47
3.7.4液態甲酸、甲醇與乙醇滲透率實驗......49
3.8觸媒層漿料製備......51
3.9電池性能量測......52
3.10單電池性能測試......54
第四章 結果與討論......55
4.1 GO的分析......55
4.1.1 GO經FESEM的分析結果......55
4.1.2 GO經TEM的分析結果......57
4.1.3 GO經FTIR的分析結果......59
4.1.4 GO經XRD的分析結果......61
4.1.5 GO經Raman的分析結果......63
4.1.6 GO儀器分析結論......65
4.2 Pd與PtRu觸媒對直接甲酸燃料電池影響......66
4.2.1 Pd與PtRu觸媒應用於陽極之電池性能比較......66
4.2.2 Pd觸媒活性衰退的探討......68
4.3市售Nafion 薄膜 (N115、N117、N212) 之性質比較......70
4.3.1 Nafion薄膜之膨潤度與吸水率......70
4.3.2 Nafion薄膜之離子導電度探討......72
4.3.3 Nafion薄膜之甲酸滲透率......74
4.3.4 Nafion薄膜之電池性能探討......76
4.4 自製觸媒層對直接甲酸燃料電池影響......78
4.4.1不同觸媒含量之甲酸燃料電池性能......78
4.4.2 進料濃度對於電池性能之影響......81
4.5 N212/GO 複合膜材分析與電性探討......85
4.5.1 N212/GO 複合膜材之FESEM圖探討......85
4.5.2 N212/GO 複合膜材之XRD探討......89
4.5.3 N212/GO 複合膜材之ATR-FTIR探討......91
4.5.4 N212/GO 複合膜材之Raman探討......93
4.5.5 N212/GO 複合膜材之吸水率及離子交換容積探討......95
4.5.6 N212/GO 複合膜材之離子導電度......98
4.5.7 N212/GO 複合膜材之不同進料滲透率......101
4.5.8 N212/GO 複合膜材之水的擴散係數及進料滲透率探討......106
4.5.9 SC-3.6與SC-0.3之電池性能探討......108
4.5.10 N212/GO 複合膜材之電池性能探討......110
4.5.11 GO於複合膜材中之排列方式......117
第五章.結論......121
參考文獻......124


圖目錄
圖 1. 甲酸燃料電池工作原理示意圖。......6
圖 2. DFAFC於不同甲酸濃度之電池性能。......7
圖 3. sPES薄膜與N115於相同條件下,電池性能之比較。......9
圖 4. 於陽極使用不同Pd金屬比例觸媒對於電池性能的影響。......10
圖 5. 經過一段時間操作後,Pd觸媒活性與電池性能之關係。......13
圖 6. 經過一段時間操作後,Pd觸媒活性與電池性能之I-P Curve。......13
圖 7.石墨烯氧化成氧化石墨烯示意圖。......15
圖 8. 不同掃描速率與產生的電流密度之關係。(a) Pt 奈米顆粒;(b) PtRu奈米顆粒......16
圖 9. GO熱壓於N115上與N115電池性能比較。......18
圖 10. 添加0.5 wt% GO於Recast Nafion中,與N 212電池性能比較。......18
圖 11. Cussler 模型提出之不同排列方式片狀材料。......21
圖 12. 各種比例的Nafion含量在70°C下對於 PEMFC效能的影響。......24
圖 13.於陽極時使用不同觸媒含量對電池性能的影響 (a) 25⁰C ;(b) 70⁰C。......26
圖 14. N117在30°C下(a)不同Pt-Ru觸媒層含量之 I-V Curve ;(b)不同Pt-Ru觸媒層含量之之 I-P Curve。......28
圖 15. 比較CCM與GDE不同方法製備模電極組對於電池性能的影響(a) 循環伏安法;(b)電池性能曲線。......31
圖 16. N212與複合膜材照片圖(a) N212;(b) DC-0.4;(c) DC-2.0;(d) SC-03;(e) SC-3.6。......43
圖 17. 量測導電度的T型cell 圖。......48
圖 18. 液態甲醇滲透實驗裝置圖。......50
圖 19.電池模組與流道板。......53
圖 20. 不同樣品的FESEM分析圖: (a) graphite; (b) GO-1; (c) GO-2; (d) GO-3。......56
圖 21. 不同樣品的TEM分析圖: (a) graphite; (b) GO-1; (c) GO-2; (d) GO-3。......58
圖 22. GO與graphite的FTIR分析圖。......60
圖 23. Graphite 的XRD分析圖。......62
圖 24. GO-1、GO-2與GO-3的XRD分析圖。......62
圖 25. Graphite的Raman分析圖。......64
圖 26. GO-1、GO-2與GO-3的Raman分析圖。......64
圖 27. 自製不同觸媒於陽極下(2 mg cm-2 Pd與PtRu)的GDE電池性能比較。......67
圖 28. 自製Pd觸媒(2 mg cm-2)的GDE電池性能(a) I-P curve; (b) I-V curve。......69
圖 29. Nafion薄膜於不同操作溫度下之離子導電度。......72
圖 30. Nafion薄膜之甲酸滲透率。......75
圖 31. 自製PtRu觸媒(2 mg cm-2)於不同市售Nafion 薄膜 (N117、N115、N212)之電池性能。......77
圖 32. 自製不同觸媒含量(2 mg cm-2 和5 mg cm-2 )的GDE電池性能比較(a) 60ºC; (b) 80ºC。......80
圖 33. 不同甲酸進料濃度及2.0 M甲醇與3.0 M乙醇的電池性能 (a) 60⁰C; (b) 80⁰C I-V圖; (c) 80⁰C I-P圖。......84
圖 34. N212/GO複合膜材之FESEM 表面圖: (a)N212; (b)DC-0.4; (c)DC-2.0; (d)SC-3.6; (e)SC-0.3。......86
圖 35. N212/GO複合膜材之FESEM 側面圖: (a)N212; (b)DC-0.4; (c)DC-2.0; (d)SC-3.6; (e)SC-0.3。 ......88
圖 36. N212與複合膜材之XRD分析圖。......90
圖 37. N212/GO複合膜材與GO之ATR-FTIR分析圖。......92
圖 38. N212/GO複合膜材之Raman分析圖。......94
圖 39. N212/GO複合膜材之離子交換容積與吸水率圖。......97
圖 40. N212/GO複合膜材之擴散係數與5.0 M甲酸滲透率比較圖。......107
圖 41. 80⁰C下1.0 M 甲酸時,SC-3.6與SC-0.3複合膜材之電池性能比較(a) I-V Curve; (b) I-P Curve。 ......109
圖 42. 80⁰C下5.0 M 甲酸 N212/GO複合膜材電池性能比較(a) I-V Curve; (b) I-P Curve。......113
圖 43. 80⁰C下8.0 M甲酸 N212/GO複合膜材電池性能比較(a) I-V Curve; (b) I-P Curve。......114
圖 44. 80⁰C下2.0 M 甲醇 N212/GO複合膜材電池性能比較(a) I-V Curve; (b) I-P Curve。......115
圖 45. 80⁰C下3.0 M 乙醇 N212/GO複合膜材電池性能比較(a) I-V Curve; (b) I-P Curve。......116
圖 46. Nielsen與Cussler模型於5.0 M甲酸進料之相對滲透係數與GO體積分率關係圖。......119
圖 47. N212/GO複合膜材與進料滲透之示意圖。......120


表目錄
表 1. 於相同條件下,DFAFC與DMFC之電池性能比較......8
表 2.石墨烯性質......15
表 3.Nafion薄膜於水中之膨潤度與吸水率......71
表 4. Nafion薄膜於不同操作溫度下之離子導電度......73
表 5.Nafion 薄膜於甲酸濃度5.0 M與操作溫度60⁰C下之離子導電度與甲酸滲透率之選擇率......75
表 6. 比較N212/GO複合膜材之吸水率與離子交換容積......97
表 7. 於80⁰C下,N212/GO複合膜材之離子交換容積及離子導電度......100
表 8. N212/GO複合膜材於60⁰C下之滲透率......104
表 9. N212/GO複合膜材於80⁰C下之滲透率......104
表 10. 80⁰C下N212/GO複合膜材之離子導電度與進料滲透率之選擇率......105
表 11. 比較N212/GO複合膜材之水的擴散係數與5.0 M甲酸滲透率......107


1. S. R. Samms, S. Wasmus, R. F. Savine, Thermal Stability of Nafion® in Simulated Fuel Cell Environments, J. Electrochem. Soc. 143 (1996) 1498–1504.
2. T. Okada, S. Moller-Holst, O. Gorseth, S. Kjelstrup, Transport and equilibrium properties of Nafion membranes with H+ and Na+ ion, J. Electrochem. Soc. 442(1998)137–145.
3.高淑敏, 以含銀離子之滲透蒸發薄膜分離有機物的研究, 長庚大學化學與材料工程研究所碩士論文, 台灣 (2001)。
4. C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, J. Power Sources 111 (2002) 83–89.
5. A.S. Aricò, S. Srinivasan, V. Antonucci, DMFCs: From fundamental aspects to technology development, Fuel Cells 1 (2001) 133–161.
6. M.S. Wilson, F.H. Garzon, K.E. Sickafus, S. Gottesfeld, Surface area loss of supported platinum in polymer electrolyte fuel cells, J. Electrochem. Soc. 140 (1993) 2872–2877.
7. K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube- and nanofiber-supported pt electrocatalysts for pem fuel cell catalysis, J. Appl. Electrochem. 36 (2006) 507–522.
8. S. Guo, S. Dong, E. Wang, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation, ACS Nano 4 (2009) 547–555.
9. 李龍昀,聚苯咪唑固態電解質薄膜與氣體擴散層之微孔層應用於甲醇燃料電池之效能研究,長庚大學化工與材料工程研究所碩士論文,台灣(2013)。
10. Y. Zhu, S. Y. Ha, R. I. Masel, High power density direct formic acid fuel cells, J. Power Sources 130 (2004) 8–14.
11. Y. Zhu, Z. Khan, R.I. Masel, The behavior of palladium catalysts in direct formic acid fuel cells, J. Power Sources 139 (2005) 15–20.
12. H.J. Kim, N. N. Krishnan, S.Y. Lee, S. Y. Hwang, D. Kim, K. J. Jeong, J. K. Lee, E. Cho, J. Lee, J. Han, H. Y. Ha, T.H. Lim, Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operations, J. Power Sources 160 (2006) 353–358.
13. S. Ha, R. Larsen, R.I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells, J. Power Sources 144 (2005) 28–34.
14. L. Shen, H. Li, L. Lu, Y. Luo, Y. Tang, Y. Chen, T. Lu, Improvement and mechanism of electrocatalytic performance of Pd–Ni/C anodic catalyst in direct formic acid fuel cell, Electrochemica Acta 89 (2013) 497–502.
15. Y. Zhou, J. Liu, J. Ye, Z. Zou, J. Ye, J. Gu, T. Yu, A. Yang, Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell, Electrochemica Acta 55 (2010) 5024–5027.
16. W. S. Jung, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, S. A. Hong, Performance degradation of direct formic acid fuel cell incorporating a Pd anode catalyst, J. Power Sources 196 (2011) 4573–4578.
17. P. Steurer, R. Wissert, R. Thomann, R. Mulhaupt, Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide, Macromo. Rapid. Comm. 30 (2009) 316–327.
18. H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Physical Chemistry 110 (2006) 8535–8539.
19. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8 (2008) 902–907.
20. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett. 100 (2008) 016602-1–016602-4.
21. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended grapheme, Solid State Commun. 146 (2008) 351–355.
22. 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊33–2, (2011) 163–167.
23. X. Shen, L. Jiang, Z. Ji, J. Wua, H. Zhou , G. Zhu, Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant, J. Colloid. Interf. Sci. 354 (2011) 493–497.
24. B. Kartick, S. K. Srivastava, Simple Facile Route for the Preparation of Graphite Oxide and Graphene, J. Nanosci. Nanotechno. 11 (2011) 8586–8592.
25. L. J. Cote, F. Kim, J. Huang, Langmuir-Blodgett Assembly of Graphite Oxide Single Layers, J. Am. Chem. Soc. 131 (2009) 1043–1049.
26. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228–240.
27. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. Huang, Graphene Oxide Sheets at Interfaces, J. Am. Chem. Soc. 132 (2010) 8180–8186.
28. Z. An, S. Sarkar, O.C. Compton, S.T. Nguyen, Functionalized Graphene and Graphene Oxide: Materials Synthesis and Electronic Applications, http://www.nseresearch.org/2011/presentations/Day1_Son Binh_Nguyen~Nguyen_NSF_NSE_2011_12_05_final.pdf.
29. L. Dong, R. R. S. Gari a, Z. Li, M. M. Craig , S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon (2010) 781–787.
30. Y. Wang, Z. Shi , J. Fang, H. Xu, J. Yin, Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method, Carbon 49 (2011) 1199–1207.
31. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Adv. Funct. Mater. 19 (2009) 2297–2302.
32. A. Satti, P. Larpent, Y. Gun’ko, Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking, Carbon 48 (2010) 3376–3381.
33. C. W. Lin, Y. S. Lu, Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells, J. Power Sources 237 (2013) 187–194.
34. B. G. Choi, Y. S. Huh, Y. C. Park, D. H. Jung, W. H. Hong, H. Park, Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets, Carbon 50 (2012) 5395–5402.
35. B. G. Choi, J. Hong, Y. C. Park, D.H. Jung, W. H. Hong, P. T. Hammond, H. Park, Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes, ACS Nano 5 (2011) 5167–5174.
36. R. Kumar, C. Xu, K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells, RSC Adv. 2 (2012) 8777–8782.
37. 陳榮財,透明超高阻隔性高分子/石墨烯複合薄膜之研究 ,中原大 學化學工程學系博士學位論文,台灣(2014)
38. L.E. Nielsen, Model for the permeability of filled polymer systems, J. Macromol. Sci. Part A – Chemi. 1 (1967) 929–942.
39. E.L Cussler, S.E. Hughes, W.J. Ward Iii, R. Aris, Barrier membranes, J. Membrane Sci. 38 (1988) 161–174.
40. W. S. Jane, I. Rawson, J.C. Grunlan, Layer-by-layer assembly of thin film oxygen barrier, Thin Solid Film 516 (2008) 4819–4825.
41. J. H. Choi , K. J. Jeong , Y. Dong, J. Han, T. H. Lim, J. S. Lee, Y. E. Sung, Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells, J. Power Sources 163 (2006) 71–75.
42. M. Uchida, Y. Aoyama, N. Eda, A. Ohta, Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 142 (1995) 4143–4149.
43. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance, Electrochemi. Acta 46 (2001) 799–805.
44. J. S. Kim, J. K. Yu, H. S. Lee, J. Y. Kim, Y. C. Kim, J. H. Han, I. H. Oh and Y. W. Rhee. Effect of Temperature, Oxidant and Catalyst Loading on the Performance of Direct Formic Acid Fuel Cell. Korean J. Chem. Eng. 22 (2005) 661–665.
45. V. Baglio, A. Di Blasi, E. Modica, P. Cretì, V. Antonucci, A. S. Aricò, Electrochemical Analysis of Direct Methanol Fuel Cells for Low Temperature Operation, International J. Electrochemi. Sci. 1 (2006) 71–79.
46. S.Q. Song, Z.X. Liang, W.J. Zhou, G.Q. Sun, Q. Xin, V. Stergiopoulos, P. Tsiakaras, Direct methanol fuel cells: The effect of electrode fabrication procedure on meas structural properties and cell performance, J. Power Sources 145 (2005) 495–501.
47. I. S. Park, W. Li, A. Manthiram, Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells, J. Power Sources 195 (2010) 7078–7082.
48. H. Tang, S. Wang, M. Pan, S.P. Jiang, Y. Ruan, Performance of direct methanol fuel cells prepared by hot-pressed mea and catalyst-coated membrane (ccm), Electrochimic. Acta 52 (2007) 3714–3718.
49. L.D. Tsai, H. C. Chien, W. H. Huang, C. P. Huang, C. Y. Kang, J.N. Lin, F. C. Chang, Novel Bilayer Composite Membrane for Passive Direct Methanol Fuel Cells with Pure Methanol, Int. J. Electrochem. Sci. 8 (2013) 9704 – 9713.
50. B.Y. Wang, C. K. Tseng, C. M. Shih, Y. L. Pai, H. P. Kuo, S. J. Lue, Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene–ethylene/butylene–styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells, J. Membrane Sci. 464 (2014) 43–54.
51. Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda, Y. Miyazaki, Dissolution of Nafion® membrane and recast Nafion® film in mixtures of methanol and water, J. Power Sources 126 (2004) 41–45.
52. S. J. Lue, T. H. Yang, K. S. Chang, K. L. Tung, Water diffusivity suppression and ethanol-over-water diffusion selectivity enhancement for ethanol/water mixtures in polydimethylsiloxane–zeolite membranes, J. Membrane Sci. 415–416(2012)635–643.
53. Y. W. Rhee, S. Y. Ha, R. I. Masel, Crossover of formic acid through Nafion1 membranes, J. Power Sources 117 (2003) 35–38.
54. T. A. Pham, J. S. Kim, D. Kim, Y. T. Jeong, Facile Preparation of Water-Dispersible Graphene Nanosheets by Covalent Functionalization With Poly(3-aminobenzene sulfonic acid), Polym. Eng. Sci. 52 (2012) 1854–1861.
55. A. Maoa, D. Zhang, X. Jin b, X. Gu, X. Wei, G. Yang, X. Liu, Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity, J. Phys. Chem. Solids. 73 (2012) 982–986.
56. F.Y. Ban, S.R. Majid, N.M. Huang, H.N. Lim, Graphene Oxide and Its Electrochemical Performance, Int. J. electrochemi. Sci. 7 (2012) 4345 – 4351.
57. Z. Ji, X. Shen, M. Li, H. Zhou, G. Zhu, K. Chen, Synthesis of reduced grapheme oxide/CeO2 nanocomposites and their photocatalytic properties, Nanotechnology 24 (2013) 115603-1–115603-9.
58. K. Ai, Y. Liu, L. Lu, X. Cheng, L. Huo, A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent, J. Mater. Chem. 21 (2011) 3365–3370.
59. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. 22 (2010) 3906–3924.
60. A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007) 47–57.
61. S. Reich, C. Thomsen, Raman spectroscopy of graphite, Royal Soc. 362 (2004) 2271–2288.
62. N. Fujiwara, Z. Siroma, S. Yamazaki, T. Ioroi, H. Senoh, K. Yasuda, Direct ethanol fuel cells using an anion exchange membrane, J. Power Sources 185 (2008) 621–626.
63. K. Kunimatsu, T. Yoda, D. A. Tryk, H. Uchida, M. Watanabe, In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface, Phys. Chem. Chem. Phys 12 (2010) 621–629.
64. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, A. B. Bocarsly, Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C, J. Electrochem. Soc. 149 (2002) A256–A261.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top