1. S. R. Samms, S. Wasmus, R. F. Savine, Thermal Stability of Nafion® in Simulated Fuel Cell Environments, J. Electrochem. Soc. 143 (1996) 1498–1504.
2. T. Okada, S. Moller-Holst, O. Gorseth, S. Kjelstrup, Transport and equilibrium properties of Nafion membranes with H+ and Na+ ion, J. Electrochem. Soc. 442(1998)137–145.
3.高淑敏, 以含銀離子之滲透蒸發薄膜分離有機物的研究, 長庚大學化學與材料工程研究所碩士論文, 台灣 (2001)。4. C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, J. Power Sources 111 (2002) 83–89.
5. A.S. Aricò, S. Srinivasan, V. Antonucci, DMFCs: From fundamental aspects to technology development, Fuel Cells 1 (2001) 133–161.
6. M.S. Wilson, F.H. Garzon, K.E. Sickafus, S. Gottesfeld, Surface area loss of supported platinum in polymer electrolyte fuel cells, J. Electrochem. Soc. 140 (1993) 2872–2877.
7. K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube- and nanofiber-supported pt electrocatalysts for pem fuel cell catalysis, J. Appl. Electrochem. 36 (2006) 507–522.
8. S. Guo, S. Dong, E. Wang, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation, ACS Nano 4 (2009) 547–555.
9. 李龍昀,聚苯咪唑固態電解質薄膜與氣體擴散層之微孔層應用於甲醇燃料電池之效能研究,長庚大學化工與材料工程研究所碩士論文,台灣(2013)。10. Y. Zhu, S. Y. Ha, R. I. Masel, High power density direct formic acid fuel cells, J. Power Sources 130 (2004) 8–14.
11. Y. Zhu, Z. Khan, R.I. Masel, The behavior of palladium catalysts in direct formic acid fuel cells, J. Power Sources 139 (2005) 15–20.
12. H.J. Kim, N. N. Krishnan, S.Y. Lee, S. Y. Hwang, D. Kim, K. J. Jeong, J. K. Lee, E. Cho, J. Lee, J. Han, H. Y. Ha, T.H. Lim, Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operations, J. Power Sources 160 (2006) 353–358.
13. S. Ha, R. Larsen, R.I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells, J. Power Sources 144 (2005) 28–34.
14. L. Shen, H. Li, L. Lu, Y. Luo, Y. Tang, Y. Chen, T. Lu, Improvement and mechanism of electrocatalytic performance of Pd–Ni/C anodic catalyst in direct formic acid fuel cell, Electrochemica Acta 89 (2013) 497–502.
15. Y. Zhou, J. Liu, J. Ye, Z. Zou, J. Ye, J. Gu, T. Yu, A. Yang, Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell, Electrochemica Acta 55 (2010) 5024–5027.
16. W. S. Jung, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, S. A. Hong, Performance degradation of direct formic acid fuel cell incorporating a Pd anode catalyst, J. Power Sources 196 (2011) 4573–4578.
17. P. Steurer, R. Wissert, R. Thomann, R. Mulhaupt, Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide, Macromo. Rapid. Comm. 30 (2009) 316–327.
18. H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Physical Chemistry 110 (2006) 8535–8539.
19. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8 (2008) 902–907.
20. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett. 100 (2008) 016602-1–016602-4.
21. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended grapheme, Solid State Commun. 146 (2008) 351–355.
22. 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊33–2, (2011) 163–167.23. X. Shen, L. Jiang, Z. Ji, J. Wua, H. Zhou , G. Zhu, Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant, J. Colloid. Interf. Sci. 354 (2011) 493–497.
24. B. Kartick, S. K. Srivastava, Simple Facile Route for the Preparation of Graphite Oxide and Graphene, J. Nanosci. Nanotechno. 11 (2011) 8586–8592.
25. L. J. Cote, F. Kim, J. Huang, Langmuir-Blodgett Assembly of Graphite Oxide Single Layers, J. Am. Chem. Soc. 131 (2009) 1043–1049.
26. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228–240.
27. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. Huang, Graphene Oxide Sheets at Interfaces, J. Am. Chem. Soc. 132 (2010) 8180–8186.
28. Z. An, S. Sarkar, O.C. Compton, S.T. Nguyen, Functionalized Graphene and Graphene Oxide: Materials Synthesis and Electronic Applications, http://www.nseresearch.org/2011/presentations/Day1_Son Binh_Nguyen~Nguyen_NSF_NSE_2011_12_05_final.pdf.
29. L. Dong, R. R. S. Gari a, Z. Li, M. M. Craig , S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon (2010) 781–787.
30. Y. Wang, Z. Shi , J. Fang, H. Xu, J. Yin, Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method, Carbon 49 (2011) 1199–1207.
31. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Adv. Funct. Mater. 19 (2009) 2297–2302.
32. A. Satti, P. Larpent, Y. Gun’ko, Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking, Carbon 48 (2010) 3376–3381.
33. C. W. Lin, Y. S. Lu, Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells, J. Power Sources 237 (2013) 187–194.
34. B. G. Choi, Y. S. Huh, Y. C. Park, D. H. Jung, W. H. Hong, H. Park, Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets, Carbon 50 (2012) 5395–5402.
35. B. G. Choi, J. Hong, Y. C. Park, D.H. Jung, W. H. Hong, P. T. Hammond, H. Park, Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes, ACS Nano 5 (2011) 5167–5174.
36. R. Kumar, C. Xu, K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells, RSC Adv. 2 (2012) 8777–8782.
37. 陳榮財,透明超高阻隔性高分子/石墨烯複合薄膜之研究 ,中原大 學化學工程學系博士學位論文,台灣(2014)38. L.E. Nielsen, Model for the permeability of filled polymer systems, J. Macromol. Sci. Part A – Chemi. 1 (1967) 929–942.
39. E.L Cussler, S.E. Hughes, W.J. Ward Iii, R. Aris, Barrier membranes, J. Membrane Sci. 38 (1988) 161–174.
40. W. S. Jane, I. Rawson, J.C. Grunlan, Layer-by-layer assembly of thin film oxygen barrier, Thin Solid Film 516 (2008) 4819–4825.
41. J. H. Choi , K. J. Jeong , Y. Dong, J. Han, T. H. Lim, J. S. Lee, Y. E. Sung, Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells, J. Power Sources 163 (2006) 71–75.
42. M. Uchida, Y. Aoyama, N. Eda, A. Ohta, Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 142 (1995) 4143–4149.
43. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance, Electrochemi. Acta 46 (2001) 799–805.
44. J. S. Kim, J. K. Yu, H. S. Lee, J. Y. Kim, Y. C. Kim, J. H. Han, I. H. Oh and Y. W. Rhee. Effect of Temperature, Oxidant and Catalyst Loading on the Performance of Direct Formic Acid Fuel Cell. Korean J. Chem. Eng. 22 (2005) 661–665.
45. V. Baglio, A. Di Blasi, E. Modica, P. Cretì, V. Antonucci, A. S. Aricò, Electrochemical Analysis of Direct Methanol Fuel Cells for Low Temperature Operation, International J. Electrochemi. Sci. 1 (2006) 71–79.
46. S.Q. Song, Z.X. Liang, W.J. Zhou, G.Q. Sun, Q. Xin, V. Stergiopoulos, P. Tsiakaras, Direct methanol fuel cells: The effect of electrode fabrication procedure on meas structural properties and cell performance, J. Power Sources 145 (2005) 495–501.
47. I. S. Park, W. Li, A. Manthiram, Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells, J. Power Sources 195 (2010) 7078–7082.
48. H. Tang, S. Wang, M. Pan, S.P. Jiang, Y. Ruan, Performance of direct methanol fuel cells prepared by hot-pressed mea and catalyst-coated membrane (ccm), Electrochimic. Acta 52 (2007) 3714–3718.
49. L.D. Tsai, H. C. Chien, W. H. Huang, C. P. Huang, C. Y. Kang, J.N. Lin, F. C. Chang, Novel Bilayer Composite Membrane for Passive Direct Methanol Fuel Cells with Pure Methanol, Int. J. Electrochem. Sci. 8 (2013) 9704 – 9713.
50. B.Y. Wang, C. K. Tseng, C. M. Shih, Y. L. Pai, H. P. Kuo, S. J. Lue, Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene–ethylene/butylene–styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells, J. Membrane Sci. 464 (2014) 43–54.
51. Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda, Y. Miyazaki, Dissolution of Nafion® membrane and recast Nafion® film in mixtures of methanol and water, J. Power Sources 126 (2004) 41–45.
52. S. J. Lue, T. H. Yang, K. S. Chang, K. L. Tung, Water diffusivity suppression and ethanol-over-water diffusion selectivity enhancement for ethanol/water mixtures in polydimethylsiloxane–zeolite membranes, J. Membrane Sci. 415–416(2012)635–643.
53. Y. W. Rhee, S. Y. Ha, R. I. Masel, Crossover of formic acid through Nafion1 membranes, J. Power Sources 117 (2003) 35–38.
54. T. A. Pham, J. S. Kim, D. Kim, Y. T. Jeong, Facile Preparation of Water-Dispersible Graphene Nanosheets by Covalent Functionalization With Poly(3-aminobenzene sulfonic acid), Polym. Eng. Sci. 52 (2012) 1854–1861.
55. A. Maoa, D. Zhang, X. Jin b, X. Gu, X. Wei, G. Yang, X. Liu, Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity, J. Phys. Chem. Solids. 73 (2012) 982–986.
56. F.Y. Ban, S.R. Majid, N.M. Huang, H.N. Lim, Graphene Oxide and Its Electrochemical Performance, Int. J. electrochemi. Sci. 7 (2012) 4345 – 4351.
57. Z. Ji, X. Shen, M. Li, H. Zhou, G. Zhu, K. Chen, Synthesis of reduced grapheme oxide/CeO2 nanocomposites and their photocatalytic properties, Nanotechnology 24 (2013) 115603-1–115603-9.
58. K. Ai, Y. Liu, L. Lu, X. Cheng, L. Huo, A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent, J. Mater. Chem. 21 (2011) 3365–3370.
59. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. 22 (2010) 3906–3924.
60. A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007) 47–57.
61. S. Reich, C. Thomsen, Raman spectroscopy of graphite, Royal Soc. 362 (2004) 2271–2288.
62. N. Fujiwara, Z. Siroma, S. Yamazaki, T. Ioroi, H. Senoh, K. Yasuda, Direct ethanol fuel cells using an anion exchange membrane, J. Power Sources 185 (2008) 621–626.
63. K. Kunimatsu, T. Yoda, D. A. Tryk, H. Uchida, M. Watanabe, In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface, Phys. Chem. Chem. Phys 12 (2010) 621–629.
64. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, A. B. Bocarsly, Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C, J. Electrochem. Soc. 149 (2002) A256–A261.