跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱宏欽
研究生(外文):Hung-Chin Chu
論文名稱:利用平方平均數操作元發展處理模糊資訊檢索問題之新方法
論文名稱(外文):New Methods for Fuzzy Information Retrieval Based on Quadratic-Mean Averaging Operators
指導教授:陳士杰陳士杰引用關係
指導教授(外文):Shi-Jay Chen
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:管理碩士學位學程
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:149
中文關鍵詞:模糊資訊檢索模糊詢問平方平均數操作元文件檢索延伸模糊概念網路
外文關鍵詞:Fuzzy information retrievalFuzzy queryQuadratic-Mean Averaging operatorsDocument retrievalExtended fuzzy concept networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
在此論文我們指出五項處理AND與OR模糊資訊檢索操作之現存平均操作元(i.e., P-Norm操作元、Infinite-One操作元、Waller-Kraft操作元、Geometric-Mean Averaging操作元、Weighed Power-Mean Averaging操作元)一些缺失。此外,我們利用平方平均數(Quadratic-Mean)提出一項新型態之平均操作元稱之為平方平均數操作元(Quadratic-Mean Averaging operators),進而克服現存模糊資訊檢索平均操作元缺失。我們也對於平方平均數操作元證明特性,並且利用範例針對平方平均數操作元與現存平均操作元之間進行比較。平方平均數操作元可以克服現存平均操作元缺失,並且可以簡易地決定處理AND與OR模糊資訊檢索操作之參數值α。
但是,平方平均數(QMA)操作元不能處理一般化模糊數(Generalized Fuzzy Numbers)以及區間值模糊數(Interval-Valued Fuzzy Numbers)呈現之詢問。因此,在此論文我們提出一般化模糊數平方平均數操作元(Generalized Fuzzy-Number Quadratic-Mean Averaging operators; GFNQMA)進而處理一般化模糊數與區間值模糊數呈現之詢問。一般化模糊數平方平均數操作元處理一般化模糊數與區間值模糊數呈現之詢問的模糊資訊檢索操作更為具有彈性更為具有幫助。
此外,由於上述資訊檢索運算當中,於關鍵字與關鍵字之間處理AND與OR之模糊資訊檢索操作僅僅具有一項模糊關係(i.e., 模糊正向關係)。因此,在此論文我們也提出一項在延伸模糊概念網路(Extended Fuzzy Concept Networks)之下處理文件檢索模糊詢問流程之新型態架構。其中,延伸模糊概念網路為概念與概念之間具有四項模糊關係,分別為模糊正向關係(Fuzzy Positive Association)、模糊負向關係( Fuzzy Negative
Association)、模糊一般化關係(Fuzzy Generalization)、模糊特殊化關係(Fuzzy Specialization)。並且一個延伸模糊概念網路可以利用相關矩陣(Relevance Matrix)與關係矩陣(Relation Matrix)之模型所構成。其中,相關矩陣為概念之間之相關程度而關係矩陣為概念之間之模糊關係。概念之間更進一步的內隱相關程度可以利用相關矩陣遞移包(Transitive Closure of the Relevance Matrix)進而推斷;而概念之間更進一步的內隱模糊關係可以利用關係矩陣遞移包(Transitive Closure of the Relation Matrix)進而推斷。此新型態架構模型可以克服現存文件檢索系統在延伸模糊概念網路之下之缺失。因此,此新型態架構模型在處理文件檢索問題是更為具有彈性更為具有幫助。
最後,我們也呈現一項在延伸模糊數概念網路之下處理文件檢索模糊數詢問流程之型態架構,進而處理一般化模糊數以及區間值模糊數呈現之語意詢問。此型態架構模型在處理一般化模糊數與區間值模糊數文件檢索問題是更為具有彈性更為具有幫助。
In this thesis, we indicate that some drawbacks of the five existing averaging operators (i.e., P-Norm operators, Infinite-One operators, Waller-Kraft operators, Geometric-Mean Averaging operators, and Weighed Power-Mean Averaging operators) for handling AND and OR operations of fuzzy information retrieval. Furthermore, we present new averaging operators based on quadratic-mean to overcome these drawbacks for fuzzy information retrieval. We also prove some properties of the proposed averaging operators, and use some examples to compare the proposed averaging operators with the existing averaging operators. The proposed averaging operators can overcome the drawbacks of the existing averaging operators, and easily determine an appropriate value for the parameter α for handling AND and OR operations of fuzzy information retrieval.
However, the QMA operators can not deal with queries represented by generalized fuzzy numbers and interval-valued fuzzy numbers. In this thesis, we present generalized fuzzy-number quadratic-mean averaging (GFNQMA) operators for dealing with queries based on generalized fuzzy numbers and interval-valued fuzzy numbers. The proposed GFNQMA operators are more flexible and more useful to deal with generalized fuzzy numbers and interval-valued fuzzy numbers queries.
Moreover, the above researches are all dealing with only one kind of fuzzy relationship between keywords, i.e., fuzzy positive association relation. Hence, we also propose a new architecture for fuzzy query processing for document retrieval based on extended fuzzy concept networks. In an extended fuzzy concept network, there are four kinds of fuzzy relationship between concepts in the concept networks, i.e., fuzzy positive association, fuzzy negative association, fuzzy generalization, fuzzy specialization. An extended fuzzy concept network can be modeled by a relevance matrix and a relation matrix where the elements in a relevance matrix represent the degrees of relevance between concepts and the elements in a relation matrix represent the fuzzy relationships between concepts. The implicit degrees of relevance between concepts can be inferred by the transitive closure of the relevance matrix. The implicit fuzzy relationships between concepts also can be inferred by the transitive closure of the relation matrix. The proposed method can overcome drawbacks of the existing document retrieval systems based on extended fuzzy concept networks. Hence, the proposed method is more flexible and more useful fuzzy information retrieval method to deal with document retrieval.
Finally, we also present a architecture of fuzzy number query processing for document retrieval based on extended fuzzy number concept networks to deal with linguistic queries represented by generalized fuzzy numbers and interval-valued fuzzy numbers. The presented method is more flexible and more useful to deal with generalized fuzzy numbers and interval-valued fuzzy numbers queries.
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Organization of This Thesis 5
CHAPTER 2 PRELIMINARY 8
2.1 Quadratic Mean 8
2.2 Information Retrieval Based on the Conventional Fuzzy Set Model 8
2.3 Some Existing T-Operators 9
2.4 Some Existing Averaging Operators 10
2.5 The Operator Graphs and Some Analytic Results of the Existing T-Operators and Averaging Operators 14
2.6 Generalized Fuzzy Numbers and Interval-Valued Fuzzy Numbers 19
2.7 The Ranking Method for Generalized Trapezoidal Fuzzy Numbers and Interval-Valued Fuzzy Numbers 22
2.8 Concept Networks and Extended Fuzzy Concept Networks 22
CHAPTER 3 QUADRATIC-MEAN AVERAGING OPERATORS AND GENERALIZED FUZZY NUMBER QUADRATIC-MEAN AVERAGING OPERATORS 32
3.1 Analysis of the Existing Fuzzy Sets Averaging Operators 32
3.2 Fuzzy Information Retrieval Based on the Proposed Quadratic-Mean Averaging Operators 38
3.3 Weighted Fuzzy Query Based on the Extended Quadratic-Mean Averaging Operators 50
3.4 Analysis of the Existing Fuzzy Numbers Averaging Operators 53
3.5 Using Generalized Fuzzy-Number Quadratic-Mean Averaging (GFNQMA) Operators to Deal With Queries Represented by Generalized Fuzzy Numbers 58
3.6 Using Generalized Fuzzy-Number Quadratic-Mean Averaging (GFNQMA) Operators to Deal With Queries Represented by Interval-Valued Fuzzy Numbers 71
CHAPTER 4 A NEW ARCHITECTURE OF FUZZY QUERY PROCESSING FOR DOCUMENT RETRIEVAL BASED ON EXTENDED FUZZY CONCEPT NETWORKS 84
4.1 Analysis of the Existing Document Retrieval Based on Extended Fuzzy Concept Networks 84
4.2 A Proposed Architecture for Document Retrieval Method Based on Extended Fuzzy Concept Networks 87
4.3 A Architecture of Fuzzy Number Query Processing for Document Retrieval Based on Extended Fuzzy Number Concept Networks to Deal With Queries Represented by Generalized Fuzzy Numbers 106
4.4 Fuzzy Number Query Processing for Document Retrieval Based on Extended Fuzzy Number Concept Networks to Deal With Queries Represented by Interval-Valued Fuzzy Numbers 122
CHAPTER 5 CONCLUSIONS 129
REFERENCES 131
1.Alsina, C., Trillas, E. and Valverde, L., 1983. “On some logical connectives for fuzzy set theory,” Journal of Mathematical Analysis and Application, 93(2), pp. 15-26.
2.Buell, D. A. and Kraft, D. H., 1981. “Threshold values and Boolean retrieval systems,” Information Processing and Management, 17(4), pp. 127-136.
3.Buell, D. A., 1985. “A problem in information retrieval with fuzzy sets,” Journal of the American Society for Information Science, 36(7), pp. 398-401.
4.Chen, S. H., 1985. “Ranking fuzzy numbers with maximizing set and minimizing set,” Fuzzy Sets and Systems, 17(1), pp. 113-129.
5.Chen, S. J. and Chen, S. M., 2002. “A new method for fuzzy information retrieval based on geometric-mean averaging operators,” in Proceeding of the 2002 International Computer Symposium: Workshop on Artificial Intelligence, Hualien, Taiwan, Republic of China.
6.Chen, S. J. and Chen, S. M., 2002. “A prioritized information fusion algorithm for handling multi-criteria fuzzy decision making problems,” in Proceedings of the 2002 International Conference on Fuzzy Systems and Knowledge Discovery, Singapore.
7.Chen, S. J. and Chen, S. M., 2003. “A new fuzzy query processing method for handling fuzzy-number information retrieval problems,” in Proceeding of the 14th International Conference on Information Management, Chiayi, Taiwan, Republic of China.
8.Chen, S. J. and Chen, S. M., 2003. “Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers,” IEEE Transactions on Fuzzy Systems, 11(1), pp. 45-56.
9.Chen, S. J. and Chen, S. M., 2007. “Fuzzy query processing for document retrieval based on GFNGMA operators,” Intelligent Automation & Soft Computing, 13(2), pp. 171-196.
10.Chen, S. J. and Chen, S. M., 2006. “Handling Information Filtering Problems Based on Interval-Valued Fuzzy-Numbers,” Journal of the Chinese Institute of Engineers, 29(1), pp. 83-96.
11.Chen, S. J. and Chu, H. C., 2010. “A new method for fuzzy information retrieval based on quadratic-mean averaging operators,” in Processing of the e-CASE & e-Tech International Conference, pp. 2487-2513.
12.Chen, S. M. and Horng, Y. J., 1996. “Finding inheritance hierarchies in interval-valued fuzzy concept-networks,” Fuzzy Sets System, 84(1), pp. 75–83.
13.Chen, S. M., Horng, Y. J. and Lee, C. H., 2001. “Document retrieval using fuzzy-valued concept networks,” IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 31(1), pp. 111 –118.
14.Chen, S. M., Hsiao, W. H. and Horng, Y. J., 1997. “A knowledge-based method for fuzzy query processing for document retrieval,” Cybernetics and Systems: An International Journal, 28(2), pp. 99-119.
15.Chen, S. M. and Wang, J. Y., 1995. “Document retrieval using knowledge based fuzzy information retrieval techniques,” IEEE Transactions on Systems, Man and Cybernetics, 25, pp. 793–803.
16.Chiang, D. A., Chow, L. R. and Hsien, N. C., 1997. “Fuzzy information in extended fuzzy relational databases,” Fuzzy Sets and Systems, 92(1), pp. 1-20.
17.Chiadamrong, N., 1999. “An integrated fuzzy multi-criteria decision making method for manufacturing strategies selection,” Computers and Industrial Engineering, 37(1-2), pp. 433-436.
18.Chiclana, F., Herrera, F. and Herrera-Viedma, E., 2000. “The ordered weighted geometric operator: Properties and application,” in Proceedings of the Eighth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Madrid, Spain, Vol. 2, pp. 985-991.
19.Chiclana, F., Herrera-Viedma, E., Herrera, F. and Alonso, S., 2004. “Induced ordered weighted geometric operators and their use in the aggregation of multiplicative preference relations,” International Journal of Intelligent Systems, 19(4), pp. 233-255.
20.Devedzic, G. B. and Pap, E., 1999. “Multi-criteria-multistages linguistic evaluation and ranking of machine tools,” Fuzzy Sets and Systems, 102(4), pp. 451-461.
21.Fagin, R., 1999. “Combining fuzzy information from multiple systems,” Journal of Computer and System Sciences, 58(2), pp. 83-99.
22.Frigui, H., 2001. “Interactive image retrieval using fuzzy sets,” Pattern Recognition Letters, 22(9), pp. 1021-1031.
23.Gorzałczany, M. B., 1987. “A method of inference in approximate reasoning based on interval-valued fuzzy sets,” Fuzzy Sets and Systems, 21(1), pp. 1-17.
24.Gupta, M. M. and Qi, J., 1991. “Theory of T-norms and fuzzy inference methods,” Fuzzy Sets and Systems, 40(4), pp. 431-450.
25.Her, G. T. and Ke, J. S., 1983. “A fuzzy information retrieval system model,” in Proceedings of the 1983 National Computer Symposium, Taiwan, R.O.C., pp. 147–151.
26.Herrera-Viedma, E., 2001. “An information retrieval model with ordinal linguistic weighted queries based on two weighting elements,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9 (supplement), pp. 77-88.
27.Hong, W. S., Chen, S. J. and Chen, S. M., 2005. “Fuzzy information retrieval based on weighted power-mean average operators,” in Proceeding of the Tenth International Symposium on Artificial Life and Robotics, Beppu, Oita, Japan.
28.Hong, D. H. and Lee, S., 2002. “Some algebraic properties and a distance measure for interval-valued fuzzy numbers,” Information Sciences, 148(1), pp. 1-10.
29.Horng, Y. J. and Chen, S. M., 1996. “Document retrieval based on extended fuzzy concept networks,” in Proceeding of the 4th Nat. Conf. Defense Management, Taipei, Taiwan, R.O.C., Vol. 2, pp. 1039–1050.
30.Horng, Y. J. and Chen, S. M., 1999. “Fuzzy query processing for document retrieval based on extended fuzzy concept networks,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 29(1), pp. 96-104.
31.Horng, Y. J., Chen, S. M. and Lee, C. H., 1998. “A fuzzy information retrieval method using fuzzy-valued concept networks,” in Proceeding of the IEEE 10th International Conference on Tools with Artificial Intelligence, Taipei, Taiwan, Republic of China, pp. 104-111.
32.Horng, Y. J., Chen, S. M. and Lee, C. H., 2003. “Automatically constructing multi-relationship fuzzy concept networks for document retrieval,” Applied Artificial Intelligence: An International Journal, 17(4), pp. 303-328.
33.Kacprzyk, J. and Ziółkowski, A., 2001. “Computing with words in intelligent database querying: standalone and Internet-based application,” Information Sciences, 134(1), pp. 71-109.
34.Kandel, A., 1986. “Fuzzy Mathematical Techniques with Applications. Reading,” MA: Addison-Wesley.
35.Kamel, M. B. Hadfield, and Ismail M., 1990, “Fuzzy query processing using clustering techniques,” Inf. Process. Manage., 26(2), pp. 279–293.
36.Kenney, J. F. and Keeping, E. S., 1962. “Mathematics of Statistics, Part I, 3rd ed. Princeton,” NJ: Van Nostrand.
37.Kim, C. M. and Kim, Y. G., 1999. “An improvement of Bandler-Kohout fuzzy information retrieval model using reduced set,” in Proceeding of the 1999 IEEE International Fuzzy Systems Conference, Seoul, Korea, pp. 22-25.
38.Kim, M. H., Lee, J. H. and Lee, Y. J., 1993. “Analysis of fuzzy operators for high quality information retrieval,” Information Processing Letters, 46(6), 251-256.
39.Klir, G. J. and Yuan, B., 1995. “Fuzzy Sets and Fuzzy Logic: Theory and Applications,” Prentice-Hall, Upper Saddle River, N J.
40.Kracker, M., 1992. “A fuzzy concept network model and its applications,” in Processing of the 1st IEEE Int. Conf. Fuzzy Systems, pp. 761–768.
41.Kraft, D. H. and Buell, D. A., 1983. “Fuzzy sets and generalized Boolean retrieval systems,” International Journal of Man-Machine Studies, 19(2), pp. 45-56.
42.Kraft, D. H. and Buell, D. A., 1994. “An extended fuzzy linguistic approach to generalize Boolean information retrieval,” Information Sciences, 2(4), pp. 119-134.
43.Lee, J. H., Kim, W. Y., Kim, M. H. and Lee, Y. J., 1993. “On the evaluation of Boolean operators in the extended Boolean retrieval framework,” in Proceeding of the Sixteenth Annual ACM Conference on Research and Development in Information Retrieval, Pittsburgh, PA, pp. 291-297.
44.Lee, J. H., Kim, M. H. and Lee, Y. J., 1992. “Enhancing the fuzzy set model for high quality document rankings,” in Proceeding of the 19 th Euromiero Conference, Paris, France, pp. 337-344.
45.Lee, J. H., Kim, M. H. and Lee, Y. J., 1994. “Ranking documents in thesaurus-based Boolean retrieval systems,” Information Processing and Management, 30(2), pp. 79-91.
46.Lee, J. H., 1994. “Properties of extended Boolean models in information retrieval,” in Proceeding of the Seventeenth Annual ACM Conference on Research and Development in Information Retrieval, Dublin, Ireland, pp. 182-190.
47.Liu, S. Y. and Chen, J. G., 1995. “Development of a machine troubleshooting expert system via fuzzy multiattribute decision-making approach,” Expert Systems with Applications, 8(1), pp. 187-201.
48.Lucarella, D. and Morara, R., 1991. “First: Fuzzy information retrieval system,” Journal of Information Science, 17(3), pp. 81-91.
49.Mantaras, R. L., Cortes, U. Manero, J. and Plaza, E., 1990. “Knowledge engineering for a document retrieval system,” Fuzzy Sets and Systems, 38(3), pp. 223-240.
50.Miyamoto, S., 1990. “Fuzzy Sets in Information Retrieval and Cluster Analysis,” Kluwer, Dordrecht.
51.Miyamoto, S., 1990. “Information retrieval based on fuzzy associations,” Fuzzy Sets Systems, Vol. 38, pp. 191–205.
52.Moradi, P., Ebrahim, M., and Ebadzadeh, M.M., 2008. “Personalizing results of information retrieval systems using extended fuzzy concept networks,” Iran.
53.Murai, T., Miyakoshi, M. and Shimbo, M., 1989. “A fuzzy document retrieval method based on two-valued indexing,” Fuzzy Sets Systems, Vol. 30, pp. 103–120.
54.Pasi, G. and Pereira, R. A. M., 1999. “A decision making approach to relevance feedback in information retrieval: A model based on soft consensus dynamics,” International Journal of Intelligent Systems, 14(2), pp.105-122.
55.Patyra, M. J. and Kwon, T. M. A., 1995. “Degenerated fuzzy-number processing system based on artificial neural networks,” Information Sciences, 86(5), pp. 211-226.
56.Radechi, T., 1977. “Mathematical model of time effective information retrieval system based on the theory of fuzzy set,” Inf. Process. Manage., Vol. 13, pp. 109–116.
57.Radechi, T., 1979. “Fuzzy set theoretical approach to document retrieval,” Inf. Process. Manage., Vol. 15, pp. 247–259.
58.Robertson, S. E., 1978. “On the nature of fuzz: A diatribe,” Journal of the American Society for Information Science, 29(5), pp. 304-307.
59.Rocacher, D., 2001. “On the use of fuzzy numbers in flexible querying,” in Proceeding of the IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, Vol. 4, pp. 2440–2445.
60.Sachs, W. M., 1976. “An approach to associative retrieval through the theory of fuzzy sets,” Journal of the American Society for Information Science, 27(2), pp. 85-87.
61.Salton, G. and Mcgill, M. J., 1983. “Introduction to Modern Information Retrieval.” New York: McGraw-Hill.
62.Salton, G., Fox, E. A. and Wu, H., 1983. “Extended Boolean information retrieval,” Communications of the ACM, 26(13), pp. 1022-1036.
63.Salton, G., 1988. “A simple blueprint for automatic Boolean query processing,” Information Processing and Management, 24(4), pp. 269-280.
64.Smith, M. E., 1990. “Aspects of the P-norm model of information retrieval: Syntactic query generation, efficiency, and theoretical properties,” Ph.D. Dissertation, Cornell University.
65.Tahani, V., 1976. “A fuzzy model of document retrieval system,” Inf. Process. Manage., Vol. 12, pp. 177–187.
66.Wang, J. Y. and Chen, S. M., 1993. “A knowledge-based method for fuzzy information retrieval,” in Processing of the 1st Asian Fuzzy Systems Symp., Singapore.
67.Waller, W. G. and Kraft, D. H., 1979. “A mathematical model of a weighted Boolean retrieval system,” Information Processing and Management, 15(6), pp. 235-245.
68.Yao, J. S. and Lin, F. T., 2002. “Constructing a fuzzy flow-shop sequencing model based on statistical data,” International Journal of Approximate Reasoning, 29(3), pp. 215-234.
69.Zadeh, L. A., 1965. “Fuzzy Sets,” Information and Control, 8(4), pp. 338-353.
70.Zemankova, M., 1989. “FIIS: A fuzzy intelligent information system,” Data Eng., 12(2), pp. 11–20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top