跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳玟郁
研究生(外文):Wen-Yu Chen
論文名稱:一價銅離子介導鉑還原反應用以形成鉑奈米粒子嵌合納菲薄膜複合物及其電催化氧氣還原反應
論文名稱(外文):Cu(I)-mediating Pt reduction to form Pt-nanoparticle-embedded Nafion composites and their electrocatalytic O2 reduction
指導教授:黃景帆
指導教授(外文):Jing-Fang Huang
口試委員:李豐穎陳輝龍
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:101
中文關鍵詞:鉑奈米粒子氧氣還原反應
外文關鍵詞:Pt nanoparticleO2 reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
利用一價銅離子(Cu+)介導鉑還原製備鉑嵌合全氟磺酸-聚四氟乙烯共聚物(Nafion,NF)的複合物(NF(Ptnano)),此複合物(NF(Ptnano))具有分散性良好且不需要保護試劑的鉑奈米晶體,鉑奈米晶體具有窄的粒子大小分布(約2.1奈米)。一價銅離子(Cu+)藉由二價銅離子(Cu2+)的電化學還原在Nafion中累積,一價銅離子(Cu+)作為一個可移動的介導者將PtCl42-還原成鉑(Pt)。NF(Ptnano)複合物組成及粒子大小的鑑定是透過X-ray繞射(XRD) 、穿透式電子顯微鏡(TEM)、X-ray 光電子光譜(XPS)以及電化學的鑑定。鉑奈米粒子分散在Nafion膜內與電極有電間的聯通卻不需要任何的介質或是碳載體。NF(Ptnano)複合物具有高度的催化效能可作為有潛力的電催化材料,也將此材料用氧氣還原反應(ORR)去展現其良好的催化效能。鉑嵌合Nafion催化劑進行氧氣還原反應的催化活性利用循環伏安法及旋轉環盤電極來觀察之。

A Cu+ ion-mediating Pt reduction used to prepare nanoparticle Pt-embedded Nafion (NF(Ptnano)) composites with well-dispersed and protective agent-free Pt nanocrystals with narrow particle size(~2.1 nm) distribution is described. Cu+ accumulated in Nafion via the electrochemical reduction of Cu2+ serves as a movable mediator to reduce PtCl42- to Pt. The NF(Ptnano) composites were probed as a function of composition and particle size distribution using powder X-ray diffraction (XRD),transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical characterization. The Pt nanoparticles distributed in the Nafion film electrically communicate with the electrode without any mediators or carbon support. The highly catalytic performance of the NF(Ptnano) composite as a potential electrocatalytic material for facilitation of the oxygen reduction reaction (ORR) was demonstrated. The electrocatalytic activity of Pt-embedded Nafion catalysts for ORR was investigated with cyclic voltammetry and rotating disc electrode (RDE) voltammetry experiments.

總目錄
謝誌……………………………………………………………………… i
摘要……………………………………………………………………… ii
Abstract ……………………………………………………………… iii
總目錄……………………………………………………………………iv
圖目錄 ……………………………………………………………… viii
表目錄 …………………………………………………………………x
第一章 前言 1
1-1 研究動機 1
1-2 燃料電池簡介 3
1-2-1 質子交換膜燃料電池 5
1-2-2 磷酸型燃料電池 8
1-2-3 固體氧化物燃料電池 10
1-2-4 氫-氧燃料電池 11
1-2-5 熔融碳酸鹽型燃料電池 13
1-3 燃料電池的發展困境 15
1-3-1 鉑催化劑價格昂貴-使用非貴金屬催化劑 16
1-3-2 改善催化劑效能-使用碳作為金屬催化劑載體 19
1-3-3 碳作為金屬催化劑載體-碳腐蝕 21
1-3-4 鉑催化劑價格昂貴-使用鉑合金催化劑 28
1-4 Nafion的介紹 30
1-5 氧氣還原反應 33
1-5-1 於酸性環境下之氧氣還原反應 35
1-5-2 於鹼性環境下之氧氣還原反應 40
第二章 原理 47
2-1 電化學方法-循環伏安法 47
2-2 穿透式電子顯微鏡 49
2-3 奈米鉑重量計算 53
2-4 電化學活性表面積之計算 53
2-5 銅低電位沉積 54
2-5-1 銅低電位沉積在Pt(111)於過氯酸中 55
2-5-2 銅低電位沉積在Pt(111)於硫酸中 56
2-6 旋轉圓盤電極之氧氣還原反應 57
第三章 實驗 59
3-1 藥品 59
3-2 實驗器材與儀器設備 60
3-3 實驗步驟 61
3-3-1 電極前處理 61
3-3-2 配製實驗溶液 62
3-3-3 玻璃碳電極製備奈米鉑納菲薄膜複合物 64
3-3-4 NF(Ptnano)複合物之ECSA測定 64
3-3-5 旋轉圓盤電極製備奈米鉑納菲薄膜複合物 65
3-3-6 TEM樣品製備 66
3-3-7 NF(Ptnano)複合物之XPS鑑定 66
3-3-8 NF(Ptnano)複合物之XRD鑑定 67
3-4 電化學容槽 68
第四章 結果與討論 69
4-1 玻璃碳電極與NF@GC之循環伏安圖 69
4-2 NF@GC多次循環伏安掃描之循環伏安圖 73
4-3 TEM結果圖與粒徑大小分布圖 75
4-4 NF(Ptnano)複合物的XPS結果圖 79
4-5 NF(Ptnano)複合物的XRD結果圖 81
4-6 NF(Ptnano)複合物之電化學活性表面積 83
4-7 NF(Ptnano)複合物之氧氣還原反應 86
4-8 NF(Ptnano)複合物於旋轉圓盤電極之氧氣還原反應 90
第五章 結論………………………………………………………… 93
參考文獻…………………………………………………………………94
圖目錄
圖1-1:一價銅離子介導鉑的還原……………………………………… 3
圖1-2:質子交換膜燃料電池…………………………………………… 6
圖1-3:磷酸燃料電池工作原理示意圖 …………………………………9
圖1-4:固體氧化物燃料工作原理示意圖 …………………………… 11
圖1-5:氫-氧燃料電池示意圖………………………………………… 12
圖1-6:熔融碳酸鹽型燃料電池示意圖 ……………………………… 15
圖1-7:區域A到D的反應示意圖 ……………………………………23
圖1-8:單一電池配置圖 ……………………………………………… 24
圖1-9:碳腐蝕圈數對燃料電池效能的影響 ………………………… 25
圖1-10:碳腐蝕圈數對燃料電池電化學活性表面積的影響 …………26
圖1-11:SEM …………………………………………………………… 27
圖1-12:Nafion的化學結構 ……………………………………………31
圖1-13:不同溫度下過電壓對實驗以及動力電流密度作圖 …………38
圖1-14:鉑粒子大小效應 ………………………………………………39
圖1-15:氧氣還原反應於水溶液中的反應路徑 ………………………41
圖1-16:循環伏安圖 ……………………………………………………42
圖1-17:a伏安圖;b Koutecky-Levich圖 …………………………… 44
圖2-1:循環伏安儀的基本電路圖………………………………………49
圖2-2: 單一循環的循環伏安圖……………………………………… 49
圖2-3: 典型的循環伏安圖…………………………………………… 49
圖2-4: 基本穿透式電子顯微鏡的光學元件圖……………………… 52
圖2-5: 銅低電位沉積在0.1mM Cu+不同支撐電解質的循環伏安圖57
圖3-1: 電化學容槽…………………………………………………… 68
圖4-1: a)在含有0.1mM Cu2+的0.1M NaNO3溶液中進行循環伏安掃
描………………………………………………………………70
圖4-1: b)實線為在含有PtCl42-及0.1mM Cu2+的0.1M NaNO3溶液中
進行循環伏安掃描;虛線為在不含有PtCl42-但含有0.1mM
Cu2+的0.1M NaNO3溶液中進行循環伏安掃描………… 71
圖4-2: NF@GC在含有0.1mM Pt2+及0.1mM Cu2+的0.1M NaNO3溶
液中進行循環伏安的多次掃描…………………………… 74
圖4-3: a)NF(Ptnano)複合物覆蓋在鈦格板上的TEM結果圖,左上方小
圖示為選取某區域的電子繞射圖…………………………… 77
圖4-3: b)粒徑大小分布圖,從圖4-3 a中隨機選取120個粒子……77
圖4-4: 鉑奈米粒子在NF(Ptnano)複合物覆蓋在鈦格板上的高解析穿透
式電子顯微鏡結果圖…………………………………………78
圖4-5: a) NF(Ptnano)複合物的XPS光譜圖……………………………80
圖4-5:b) NF(Ptnano)複合物在Pt (4f)區域的高解析XPS光譜圖 80
圖4-6: 一系列NF(Ptnano)複合物的XRD結果圖………………………82
圖4-7: 0.2M H2SO4中紀錄不同質量NF(Ptnano)複合物的循環伏圖…84
圖4-8: a) 使用裸露的玻璃碳電極(GC)、NF@GC電極、鉑圓盤電極
(bulk Pt)及NF(Ptnano)複合物修飾玻璃碳電極(NF(Ptnano)@GCE)
於氧氣飽和的0.1M HClO4中進行氧氣還原的循環伏安掃描
結果圖…………………………………………………………88
圖4-8: b) NF(Ptnano)複合物的氧氣還原極化曲線……………………89
圖4-9: a)氧氣還原反應之極化曲線………………………………… 92
圖4-9: b)Koutecky–Levich圖…………………………………………92

表目錄
表1-1:電化學氧氣還原的熱力學電極電位……………………………34
表1-2: 計算鉑粒子大小……………………………………………… 43
表1-3:氧氣還原反應之動力學參數……………………………………45
表4-1:NF(Ptnano)複合物及Pt/C 催化劑進行氧氣還原反應的電化學活
性表面積(ECSA),鉑在0.9V的質量活性及比活性………… 85


1.S. J. Guo and E. K. Wang, Nano Today, 6 (2011) 240.
2.K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang and R. R. Adzic, Angew. Chem., Int. Ed., 49 (2010) 8602.
3.A. C. Chen and P. Holt-Hindle, Chem. Rev., 110 (2010) 3767.
4.M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca and H. Idriss, Nat. Chem., 3 (2011) 489.
5.X. F. Wu, P. Anbarasan, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 49 (2010) 9047.
6.J. F. Huang and H. Y. Chen, Angew. Chem., Int. Ed., 51 (2012) 1684.
7.J. F. Huang, Electroanalysis, 20 (2008) 2229.
8.J. F. Huang, Talanta, 77(2009)1694.
9.J. F. Huang and B. T. Lin, Analyst, 134 (2009) 2306.
10.J.F. Huang and M.-C. Fan, J. Mater. Chem., 20 (2010) 1431.
11.V. Mazumder, Y. Lee and S. Sun, Adv. Funct. Mater., 20 (2010) 1224.
12.Y. Bing, H. Liu, L. Zhang, D. Ghosh and J. Zhang, Chem. Soc. Rev., 39 (2010) 2184.
13.A. Morozan, B. Jousselme and S. Palacin, Energy Environ. Sci., 4 (2011) 1238.
14.K. P. Gong, W. F. Chen, K. Sasaki, D. Su, M. B. Vukmirovic, W. P. Zhou, E. L. Izzo, C. Perez-Acosta,P. Hirunsit, P. B. Balbuena and R. R. Adzic, J. Electroanal. Chem., 649 (2010) 232.
15.D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire and J. G. Chen,
Angew. Chem., Int. Ed., 49 (2010) 9859.
16.W. L. Qu, Z. B. Wang, Z. Z. Jiang, D. M. Gu and G. P. Yin, RSC Adv., 2 (2012) 344.
17.D. Bokach, J. L. G. de la Fuente, M. Tsypkin, P. Ochal, I. C. Endsjo, R. Tunold, S. Sunde and F. Seland, Fuel Cells, 11 (2011) 735.
18.L. Quinones and M. M. Martinez-Inesta, J. Mater. Sci., 46 (2011) 7289.
19. H. Gao, J. B. He, Y. Wang and N. Deng, J. Power Sources, 205 (2012) 164.
20.J. F. Huang, Chem. Commun., (2009) 1270.
21.W. H. Kao and T. Kuwana, J. Am. Chem. Soc., 106 (1984) 473.
22.K. J. Chen, C. F. Lee, J. Rick, S. H. Wang, C. C. Liu and B. J. Hwang, Biosens. Bioelectron., 33 (2012) 75.
23.C. Y. Wang, Chem. Rev., 104 (2004) 4727.
24.M. Inaba, M. Uno, J. Maruyama, A. Tasaka, K. Katakura and Z. Ogumi, J. Electroanal. Chem., 417 (1996) 105.
25.Q. Gao, Y. Y. Guo, J. Liu, X. Q. Yuan, H. L. Qi and C. X. Zhang, Bioelectrochemistry, 81 (2011) 109.
26.J. Wang, M. Musameh and Y. H. Lin, J. Am. Chem. Soc., 125 (2003) 2408.
27.S. D. Thompson, L. R. Jordan and M. Forsyth, Electrochim. Acta, 46 (2001) 1657.
28.J. F. Huang and W. R. Chang,J.Mater.Chem, 22 (2012) 17961.
29.Khurmi,R.S,Material Science.
30.V.M. Vishnyakov,Vacuum,80 (2006) 1053.
31.Trung V. Nguyen and Ralph E. White,
Journal of the Electrochamical Society, (1993) 2178.
32.T.R.Ralph,Platinum Metals Review, 41 (1997) 102.
33.Hiroko Sotouchi,Akifusa Hagiwara,Energy Carriers and Conversion Systems.
34.R.Mark Ormerod,Chem.Soc.Rev, 32 (2003) 17.
35.K.R.Williams,Royal Society,1993.
36.Srivastave,H.C.,Nootan ISC Chemistry, (2014) 458.
37.J.Vondark,B.Klapste,J.Velicka,M.Sedlarikova and R.Cerny, J.Solid.State.Electrochem, 8 (2003) 44.
38.Kouichi Takizawa, Energy Carriers and Conversion Systems.
39.S. Kawatsu, J. Power Sources, 71 (1998) 150.
40.F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Energy Environ. Sci.,4 (2011) 114.
41.Yu Sun, Y. C. Hsieh, L. C. Chang,P. W. Wu, J. F. Lee, J.Power Source, 277 (2015) 116.
42.J. Chen, B. Lim, E.P. Lee, Y. Xia, Nano Today, 4 (2009) 81.
43.J.X. Wang, C. Ma, Y. Choi, D. Su, Y. Zhu, P. Liu, R. Si, M.B. Vukmirovic,
Y. Zhang, R.R. Adzic, J. Am. Chem. Soc., 133 (2011) 13551.
44.Jasinski R. Nature, 201 (1964) 1212.
45.DVillers D, Jacques-Bedard X, Dodelet JP. J Electrochem. Soc ,151 (2004).
46.S. Maldonado, K.J. Stevenson, J Phys Chem B, 108 (2004) 11375.
47.Matter PH, Wang E, Ozkan US. J Catal, 243 (2006) 395.
48.Nallathambi V, Lee JW, Kumaraguru SP, Wu G, Popov BN. J Power Sources , 183 (2008) 34.
49.Jaouen F, Herranz J, Lefevre M, Dodelet JP, Kramm UI, Herrmann I, ACS Appl Mater Interfaces, 1 (2009) 1623.
50. Lefevre M, Proietti E, Jaouen F, Dodelet JP. Science, 324 (2009) 71.
51.Cheon JY, Kim T, Choi Y, Jeong HY, Kim MG, Jin Sa Y, et al. Nature, 3 (2013) 2715.
52.Wu G, Nelson M, Ma S, Meng H, Cui G, Shen PK. Carbon, 49 (2011) 3972.
53.Lim SH, Li Z, Poh CK, Lai L, Lin J. J Power Sources, 214 (2012) 15.
54.Cheon JY, Kim T, Choi Y, Jeong HY, Kim MG, Jin Sa Y, et al. Nature, 3 (2013) 2715.
55.Jasinski R. Nature 201, (1964) 1212.
56.Gupta S, Tryk D, Bae I, Aldred W, Yeager E. J Appl Electrochem, 19 (1989) 19.
57.Dodelet JP, Zagal JH, Bedioui F. In: P J, editorvol. 83. New York: Springer, (2006) 147.
58.Lefevre M, Proietti E, Jaouen F, Dodelet JP. Science, 324 (2009) 71.
59.Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet JP, Wu G, et al., Energy Environ Sci ,4 (2011) 114.
60.Bashyam R, Zelenay P. Nature, 63 (2006) 443.
61.E. Negro and V. D. Noto,J. Power Sources, 178 (2008) 634.
62.D. Kang, C. Noh, S. Park, J. Sohn, S. Kim, and Y. K. Park, J.,Nanosci.Nanotechnol., 27 (2010) 802.
63.K.W.Weng,Y.L.Chen,Y.C.Chen,and N.T.Lin,J. Nanosci.Nanotechnol., 9 (2009) 821.
64.H. Mei, Q. Sheng, Y. Li, J. S. Chen, H. M. Wu, J. Nanosci.Nanotechnol.,15 (2015) 4510.
65.H. A. Gasteiger, W. Gu, R. Makharia, M. F. Mathias, B. Sompalli, W. Vielstich, A. Lamm, H. A. Gasteiger, (eds.), Fuel Cells: Fundementals, Technology, and Applications, Wiley,New York, 3 (2003) 593.
66.J. Khera, A. Singh, S. K. Mandal, and A. Chandra, Adv. Sci. Eng. Med. 5 (2013) 1067.
67.S. H. Yang, K. H. Kim, and H. W. Choi,J. Nanosci. Nanotechnol. 13 (2013) 5794.
68.C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, and M. Mastragostino, J. Power Sources., 172 (2007) 578.
69.C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker, J. Phys. Chem. B, 105 (2001) 1115.
70. K. Lee, J. Zhang, H. Wang, and D. P. Wilkinson,J. Appl. Electrochem., 36 (2006) 507.
71.C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and Y. Yan, Nano Lett., 4 (2004)345.
72.Y. Y. Shao, J. Liu, Y. Wang, Y. H. Lin, J. Mater. Chem., 19 (2009) 46.
73.Thomas S. Miller, Siriwat Sansuk, Sharel Pei E, Stanley C.S. Lai, Julie V. Macpherson , Patrick R. Unwin , Catalysis Today, 244 (2015) 136.
74.P. Bertoncello, J.P. Edgeworth, J.V. Macpherson, P.R. Unwin, J. Am. Chem. Soc.,129 (2007) 10982.
75.D. Bera, S.C. Kuiry, M. McCutchen, S. Seal, H. Heinrich, G.C. Slane, J. Appl. Phys.,96 (2004) 5152.
76.B.M. Quinn, C. Dekker, S.G. Lemay, J. Am. Chem. Soc., 127 (2005) 6146.
77.Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Diam. Relat. Mater., 13 (2004) 1764.
78.T.M. Day, P.R. Unwin, J.V. Macpherson, Nano Lett., 7 (2007) 5.
79.W. Z. Li, C. H. Liang, W. J. Zhou, J. Phys. Chem., 26 (2003) 2692.
80.Maiyalagan, T; Viswanathan, B; Varadaraju, U,
Electrochemistry Commucation, 9 (2005) 905.
81.Maldonado, Stephen; Morin, Stephen; Stevenson, Keith J., Carbon , 8 (2006) 1429.
82.Maldonado, S; Stevenson, KJ, J. Phys. Chem., 10 (2005) 4707.
83.Drew C. Higgens, Doralice Meza , Zhongwei Chen, J. Phys. Chem., 114 (2010) 21982.
84.Hao Tang, Zhigang Qi, Manikandan Ramani, John F. Elter, J. Power Sources., 158 (2006) 1306.
85.D.A. Stevens, J.R. Dahn, Carbon 43 (2005) 179.
86.L.L. Van Dine, M.M. Steinbugler, C.A. Reiser, G.W. Scheffler, U.S. Patent, 6,514,635 (2003).
87.D.A. Condit, R.D. Breault, U.S. Patent 6,635,370 (2003).
88.K. Sopian, W.R. Wan Daud, Renew. Energy 31 (2006) 719.
89.M. Ammam, E.B. Easton, J. Power Sources 236 (2013) 311.
90.V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas,N.M. Markovi c, Science 315 (2007) 493.
91.P. Mani, R. Srivastava, P. Strasser, J. Phys. Chem. C 112 (2008) 2770.
92.J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W.-P. Zhou, R.R. Adzic, J. Am.Chem. Soc. 131 (2009) 17298.
93.K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W.-F. Chen, P. Liu, R.R. Adzic, Nat. Commun., 3 (2012) 1115.
94.K.A. Kuttiyiel, K. Sasaki, D. Su, M.B. Vukmirovic, N.S. Marinkovic, R.R. Adzic, Electrochim. Acta, 110 (2013) 267.
95.J. Greeley, J.K. N?rskov, M. Mavrikakis, Annu. Rev. Phys. Chem., 53 (2002) 319.
96.C. Song, J. Zhang, PEM Fuel Cell Electrocatalysts and Catalysts Layers, Fundamentals and Applications, 2008 (Chapter 13).
97.V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, et al., Science, 315 (2007) 493.
98.C. H. Ma, T. Leon Ya, H. L. Lin, Y. T. Huang, Y. L. Chen, User Jeng, Y. H. Lai, Y. S. sun, Polymer, 50 (2009) 1764.
99.T. D. Gierke, G. E. Munn, F. C. Wilson, Journal of Polymer Science, 19 (1981) 1687.
100.Heitner-Wiguin C. J Membr Sci, 120 (1996) 1.
101.Taylor EJ, Anderson EB, Vilambi NRK. J Electrochem Soc, 139 (1992) L45.
102.Aldebert P, Gebel G, Loppinet B, Nakamura N. Polymer, 36 (1995)431.
103.Chaojie Song, Jiujun Zhang.
104.A. Damjanovic, V. Brusic, Electrochim. Acta 12 (1967) 615.
105.Olivier Antoine, Yann Bultel, Robert Durand,
Journal of Electroanalytic Chemistry, 499 (2001) 85.
106.F. El Kadiri, R. Durand, R. Faure, 41st ISE Meeting, Prague, (1990).
107.M. Watanabe, H. Sei, P. Stonehart, J. Electroanal. Chem., 261 (1989) 375.
108.L. Genies , R. Faure, R. Durand, Electrochimica Acta, 44 (1998) 1317.
109.K. Tammeveski, T. Tenno, Russian J. Electrochem., 31 (1995) 603.
110.I. Kissinger, Peter T. Labolatotory Techniques in Electroanalytical Chemistry. (Secondary Edit) MARCEL DEKKER,INC 2000.
111.James PAWLEY, SCANNING , 19 (1997) 324.
112.J.O.M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Chemistry, (2000).
113.Enrique Herrero, Lisa J. Buller, Hector D. Abruna, Chem. Rev, 101 (2001) 1897.
114.Leung, L. H.; Gregg, T. W.; Goodman, D. W.Langmuir,7 (1991) 3205.
115.Markovic, N. M.; Ross, P. N.Langmuir, 9 (1993) 580.
116.Leung, L. H.; Gregg, T. W.; Goodman, D. W.Chem. Phys. Lett., 188 (1992) 467.
117.Varga, K.; Zelenay, P.; Wieckowski, A. J. Electroanal. Chem., 330 (1992) 453.
118.Nishihara, C.; Nozoye, H.J. Electroanal. Chem., 386 (1995) 75.
119.S. H. Sun, G. X. Zhang, D. S. Geng, Y. G.Chen, R. Y. Li, M. Cai and X. L. Sun, Angew, Chem., 127 (2005) 4930.
120.Prabhu, Rahul R. , ‘ Stationary Fuel Cells Market size to reach 350,000 Shipments
by 2022.’ Renew India Campaign. Retrieved 2013-01-14.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top