跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳星豪
研究生(外文):Shing-Hau Chen
論文名稱:具有重置特性的環形平面天線
論文名稱(外文):Reconfigurable Microstrip Ring Patch Antenna
指導教授:羅鈞壎
指導教授(外文):Jeen-Sheen Row
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:76
中文關鍵詞:環形微帶天線平面單偶極天線極化重置場型重置頻率重置
外文關鍵詞:ring microstrip antennamonopole patch antennapolarization diversitypattern diversityfrequency diversity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將以環形平面天線結構設計出具有重置特性的天線。其研究內容主要分為三部份。首先,提出一個具有寬頻及雙頻操作之環形平面天線設計,天線結構使用兩個短路牆來連結方形環金屬片和接地面,並藉著頂端負載方形金屬片的同軸探針以電容耦合方式激發天線共振模態,當方形環金屬片的邊長大約為0.3λ0、天線的高度低於0.1λ0時,其阻抗頻寬可超過50 %,並且天線在阻抗頻寬內均可輻射出類似於單偶極天線之圓錐形場型。此外,若改變同軸探針所負載金屬片的形狀及位置,可同時激發兩個不同的共振模態,分別輻射出圓錐及垂向特性之場型。其次,將分別提出具有場型、極化與頻率切換功能之平面天線,此天線由一個方形環輻射金屬片和多個短路牆所組成,環形金屬片與部分短路牆之間利用二極體來連接,藉由控制二極體的開關,天線在相同的頻率點下,可輻射出圓錐形及垂向兩種不同場型或在垂向上產生兩個正交的線性極化;此外,經由選擇不同寬度的短路牆,天線可在相同的輻射場型底下具有頻率多樣化的特性。而論文中所有的天線設計都藉由電磁模擬軟體作數值分析,並與實驗所得結果作一比較,結果發現兩者有很高的一致性。
The designs of a reconfigurable ring patch antenna are proposed and studied in this dissertation. The thesis is mainly divided into three topics. First, the design of a ring patch antenna with wideband and dual-frequency operations is presented. The antenna consists of a parasitic square ring patch that is shorted to the ground plane through two shorting walls and is excited by a top-loaded coaxial probe. For the proposed design, while the side length of the square ring patch is about 0.3 free-space wavelengths and the antenna height is less than 0.1 free-space wavelengths, a 10 dB-input-impedance bandwidth of more than 50 % can be achieved. Also, the antenna can provide stable monopole-like conical radiation patterns across the impedance bandwidth. In addition, it is also found that two different resonant modes, patch-loaded monopole mode and normal patch mode, can be simultaneously excited in the shorted patch antenna structure by a coupling rectangular strip inside the ring patch. The antenna can radiate monopole-like and broadside patterns at the two operating frequencies, respectively. Second, a reconfigurable patch antenna with the functions of switchable radiation patterns, and polarizations is presented. The antenna is composed of a ring patch and four shorting walls. By controlling the connections states between the ring patch and shorting walls through pin diodes, the antenna can be operated at different modes to achieve the switching of the radiation patterns and polarizations. Moreover, three pairs of the shorting walls with various widths are integrated into the antenna to excite the patch-load monopole mode, and the resonant frequency can be changed by activating various pair of the shorting walls. From the obtained results, the three operating frequencies can occupy a successive impedance bandwidth, which makes the antenna with wide band operation.
中文摘要………………………………………………………………………… i
英文摘要………………………………………………………………………… ii
誌謝…………………………………………………………………………… iv
目錄……………………………………………………………………………… v
圖目錄………………………………………………………………………… vii
表目錄…………………………………………………………………………… ix

第一章 序論…………………………………………………… 1
1.1 概述…………………………………………………………… 1
1.2 文獻探討……………………………………………………… 3
1.3 內容提要……………………………………………………… 5
第二章 寬頻及雙頻之環形平面天線設計…………………… 7
2.1概述……………………………………………………………… 7
2.2寬頻設計………………………………………………………… 9
2.2.1天線結構與分析………………………………………… 11
2.2.2 模擬分析與實驗結果……………………………………… 15
2.3雙頻設計……………………………………………………… 29
2.3.1天線結構與分析………………………………………… 30
2.3.2 模擬分析與實驗結果…………………………………… 32
2.4結論與心得……………………………………………………… 39
第三章 可重置結構之環形平面天線設計………………………………… 40
3.1可切換場形之環形平面天線…………………………………… 40
3.1.1天線結構與分析……………………………………… 41
3.1.2模擬分析與實驗結果……………………………………45
3.2可同時切換場形與極化之環形平面天線…………………52
3.2.1天線結構與分析…………………………………………… 53
3.2.2模擬分析與實驗結果……………………………………… 55
3.3可切換操作頻率之平面天線…………………………………… 60
3.3.1天線結構與分析………………………………………… 61
3.3.2實驗結果…………………………………………………… 63
3.4結論與心得…………………………………………………… 68
第四章 結論……………………………………………………………… 69
參考文獻…………………………………………………………………… 71
附錄………………………………………………………………………… 76



圖目錄

圖2.2.1 具有寬頻之環形平面單偶極天線的幾何結構圖………………… 13
圖2.2.2 短路牆對天線結構的影響…………………………………………… 14
圖2.2.3 對於不同c的大小所量測的反射損失圖…………………………… 18
圖2.2.4 對於不同c值所量測天線的史密斯阻抗圖………………………… 19
圖2.2.5 對於不同h值所量測天線的史密斯阻抗圖……………………… 20
圖2.2.6 對於不同w值所量測天線的史密斯阻抗圖……………………… 21
圖2.2.7 不同高度的天線樣品量測結果……………………………………… 22
圖2.2.8 對於不同接地面大小所量測天線的史密斯阻抗圖……………… 24
圖2.2.9 對於不同b値所量測天線的反射損失圖…………………………… 25
圖2.2.10 短路環形平面單偶極天線於2200 MHz所量測的遠場輻射場型圖.27
圖2.2.11 短路環形平面單偶極天線的增益變化圖………………………… 28
圖2.3.1 具有雙頻操作之環形平面天線的幾何結構圖…………………… 31
圖2.3.2 環形平面天線模擬與量測的反射損失圖………………………… 34
圖2.3.3 短路牆寬度對天線反射損失圖的影響………………………… 35
圖2.3.4 s = 4 mm的樣品天線於1660 MHz所量測的遠場輻射場型圖…… 37
圖2.3.5 s = 4 mm的樣品天線於2240 MHz所量測的遠場輻射場型圖…… 38
圖3.1.1 可切換場型之環形平面天線的幾何結構圖……………………… 43
圖3.1.2 不同模態於方形環金屬片上的電流分布圖
(a)TM11模態 (b)負載單偶極模態…………………………… 44
圖3.1.3 當短路牆A和B連接至環形金屬片,短路牆C和D未與環形金屬
片連接時,不同s的天線樣品之量測結果………………………… 47
圖3.1.4 當四個短路牆連接至環形金屬片時,不同s的天線樣品之量測結果.48
圖3.1.5 天線在二極體不同狀態下所量測的反射損失圖……………… 49
圖3.1.6 當二極體導通時,天線於2020 MHz所量測的遠場輻射場型圖……50
圖3.1.7 當二極體不導通時,天線於2020 MHz所量測的遠場輻射場型圖…51
圖3.2.1 可同時切換場形與極化之環形平面天線的幾何結構圖………… 54
圖3.2.2 天線在二極體不同狀態下所量測的反射損失圖……… 56
圖3.2.3 天線操作於x方向極化的TM11模態下,於2440 MHz所量測的輻
射場型圖… 58
圖3.2.4 天線操作於負載單偶極模態時,於2440 MHz所量測的輻射場型圖. 59
圖3.3.1 可切換操作頻率之平面天線的幾何結構圖……………………… 62
圖3.3.3 三對短路牆(針)分別導通時的所量測的反射損失圖……………… 64
圖3.3.4 當r = 1.6 mm的短路針導通時,於1310 MHz所量測的遠場輻射場
型圖……… 65
圖3.3.5 當w1 = 5 mm的短路牆導通時,於1500 MHz所量測的遠場輻射場
型圖………………………………………………………………… 66
圖3.3.6 當w2 = 10 mm的短路牆導通時,於1690 MHz所量測的 遠場輻射
場型圖……………………………………………………………… 67




表目錄

表2.2.1 不同高度的樣品天線量測結果…………………………………… 23
表2.2.2 針對不同內部槽孔大小天線所量測之結果……………………… 26
表2.3.1 針對不同短路牆寬度之環形平面天線的量測結果表…………… 36
表3.2.1 天線操作在不同二極體狀態下的量測結果…………………… 57
[1] W. H. Chen and Z. H. Feng, “Planar reconfigurable pattern antenna by reactive-load switching,” Microwave and Opt. Technol. Lett., vol. 47, pp. 506-507, Dec. 5, 2005.
[2] L. Low and R. J. Langley, “Single feed antenna with radiation pattern diversity,” Electron. Lett., vol. 40, pp. 975-976, Aug. 5, 2004.
[3] J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett., vol. 38, pp. 1627-1628, Dec. 5, 2002.
[4] J. M. Zendejas, J. P. Gianvittorio, Y. Rahmat-Samii, and J. W. Judy, “Magnetic MEMS reconfigurable frequency-selective surfaces,” Microelectromechanical Systems, vol. 15, pp. 613-623, June 2006.
[5] Won Jung Chang, M. Grzeskowiak, J. M. Laheurte, and O. Picon, “Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches,” IEEE Trans. Antennas Propagat., vol. AP-54, pp. 455-463, Feb. 2006.
[6] G. H. Huff, J. Feng, S. Zhang, and J. T. Bernhard, “A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna,” IEEE Microw. Wireless Comp. Lett., vol. 13, pp. 57-59, Feb. 2003.
[7] Y. J. Sung, T .U. Jang, and Y. S. Kim, “A reconfigurable microstrip antenna for switchable polarization,” IEEE Microw. Wireless Comp. Lett., vol. 14, pp. 534-536, Nov. 2004.
[8] M. K. Fries, M. Grani, and R. Vahldieck, “A reconfigurable slot antenna with switchable polarization,” IEEE Microw. Wireless Comp. Lett., vol. 13, pp. 490-492, Nov. 2003.
[9] S. Nikolaou, R. Bairavasubramanian, C. Lugo, I. Carrasquillo, D. C. Thompson, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, “Pattern and frequency reconfigurable annular slot antenna using pin diodes,” IEEE Trans. Antennas Propagat., vol. AP-54, pp. 439-448, Feb. 2006.
[10] S. L. S. Yang and K. M. Luk, “Design of a wide-band L-probe patch antenna for pattern reconfiguration or diversity applications,” IEEE Trans. Antennas Propagat., vol. AP-54, pp. 433-438, Feb. 2006.
[11] Y. X. Guo, K. M. Luk, and K. F. Lee, “L-probe proximity-fed annular ring microstrip antenna,” IEEE Trans. Antennas Propagat., vol. AP-49, pp. 19-21, Jan. 2001.
[12] Y. S. Wu and F. J. Rosenbaum, “Mode chart for microstrip ring resonators,” IEEE Trans. Microw. Theory, vol. 21, pp. 487-489, July 1973.
[13] C. L. Mak, K. M. Luk, K. F. Lee, and Y. L. Chow, “Experimental study of a microstrip patch antenna with an L-shaped probe,” IEEE Trans. Antennas Propagat., vol. AP-48, pp. 777-783, May 2000.
[14] C. L. Mak, K. F. Lee, and K. M. Luk, “Broadband patch antenna with a T-shaped probe,” IEE Proc. Microw. Antennas Propag., vol. 147, pp. 73-76, April 2000.
[15] H. W. Lai and K. M. Luk, “Design and study of wide-band patch antenna fed by meandering probe,” IEEE Trans. Antennas Propagat., vol. AP-54, pp. 564-571, Feb. 2006.
[16] Z. N. Chen and M. Y. W. Chia, “Broad-band suspended probe-fed plate antenna with low cross-polarization levels,” IEEE Trans. Antennas Propagat., vol. AP-51, pp. 345-347, Feb. 2003.
[17] C. K. Wu and K. L. Wong, “Broadband microstrip antenna with directly coupled and parasitic patches,” Microwave and Opt. Technol. Lett., vol. 22, pp. 348-349, Sep. 5, 1999.
[18] P. M. Bafrooei and L. Shafai, “Characteristics of single- and double-layer microstrip square-ring antennas,” IEEE Trans. Antennas Propagat., vol. AP-47, pp. 1633-1639, Oct. 1999.
[19] R. Garg and K. V. S. Rao, “Dual-frequency microstrip antenna,” Electron. Lett., vol. 19, pp. 357-358, May 12, 1983.
[20] H. M. Chen, “Single-feed dual-frequency rectangular microstrip antenna with a π-shaped slot,” IEE Proc. Microw. Antennas Propag., vol. 148, pp. 60-64, Feb. 2001.
[21] R. B. Waterhouse, S. D. Targonski, and D. M. Kokotoff, “Design and performance of small printed antennas,” IEEE Trans. Antennas Propagat., vol. AP-46, pp. 1629-1633, Nov. 1998.
[22] C. Delaveaud, P. Leveque, and B. Jecko, “New kind of microstrip antenna: the monopolar wire-patch antenna,” Electron. Lett., vol. 30, pp. 1- 2, Jan. 6, 1994.
[23] L. Economou, “Patch antenna equivalent to simple monopole,” Electron. Lett., vol. 33, pp. 727- 729, April 24, 1997.
[24] Y. X. Guo, K. M. Luk, and K. F. Lee, “L-probe proximity-fed short-circuited patch antennas,” Electron. Lett., vol. 35, pp. 2069- 2070, Nov. 25, 1999.
[25] L. Zaid, G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiernik, “Dual-frequency and broad-band antennas with stacked quarter wavelength elements,” IEEE Trans Antennas Propagat., vol. AP-47, pp. 654-660, April 1999.
[26] J. S. Row, “Dual-frequency triangular planar inverted-F antenna,” IEEE Trans Antennas Propagat., vol. AP-53, pp. 874-876, Feb. 2005.
[27] J. S. Row, S. H. Yeh, and K. L. Wong, “A wideband monopolar plate-patch antenna,” IEEE Trans. Antennas Propagat., vol. AP-50, pp. 1328-1330, Sep. 2002.
[28] S. H. Yeh and K. L. Wong, “A broadband low-profile cylindrical monopole antenna top loaded with a shorted cross patch,” Microwave and Opt. Technol. Lett., vol. 32, pp. 186-188, Feb. 5, 2002.
[29] J. H. Jung and I. Park, “Electromagnetically coupled small broadband monopole antenna,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 349-351, 2003.
[30] K. L. Lau and K. M. Luk, “A wide-band monopolar wire-patch antenna for indoor base station applications,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 155-157, 2005.
[31] K. W. Chan, K. F. Tong, and K. M. Luk, “Wideband circular patch antenna operated at TM01 mode,” Electron. Lett., vol. 35, pp. 2070- 2071, Nov. 25, 1999.
[32] J. S. Row and S. H. Chen, “Wide-band monopolar square-ring patch antenna,” IEEE Trans. Antennas Propagat., vol. AP-54, pp. 1335-1339, April 2006.
[33] J. S. Row, “Dual-frequency circularly polarised annular-ring microstrip antenna,” Electron. Lett., vol. 40, pp. 153-154, Feb. 5, 2004.
[34] C. W. Su, J. S. Row, and J. F. Wu, “Design of a single-feed dual-frequency microstrip antenna,” Microwave and Opt. Technol. Lett., vol. 47, pp. 114-116, Oct. 20, 2005.
[35] C. Y. D. Sim, J. S. Row, and M. Y. Chen, “Characteristics of superstrate-loaded circular polarization square-ring microstrip antennas on thick substrate,” Microwave and Opt. Technol. Lett., vol. 47, pp. 567-570, Dec. 20, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱建民(1996)。專業倫理教育的理論與實踐。通識教育月刊,3(2),75-90。
2. 朱則剛(2003)。圖書館與教育改革。社教資料雜誌,243,4-7。
3. 王振德(1999)。不同任教年資、專業訓練資優班教師專業能力之比較研究。特殊教育與復健學報,7期,33-50。
4. 沈健華(2006)。我國高級職業學校未來發展方向之探討。商業職業教育,102,17-23。
5. 呂錘卿、林生傳(2001)。國民小學教師專業成長指標及現況之研究。教育學刊,19,45-64。
6. 吳明隆(1997)。新時代中有效能的教師行為之探究。教育實習輔導季刊,4(1), 73-79 。
7. 周春美(2006)。日本「從高等教育到職場雇用」變遷之初探。商業職業教育,102,37-43。
8. 林文雄(2007)。從新型態社會論技職教育課程的改革方向。商業職業教育,104,8-10。
9. 林生傳(1990)。國中教師專業行為之主要參照團體研究。教育學刊,9,263-292。
10. 林清江(民87):學習社會中的公務人力發展策略。成人教育,39,20-25頁。
11. 林進材(1999)。邁向教師教學專業成長。國教之友,555。
12. 范盛賢(2006)。從全球化潮流談我國高職教育發展趨勢。商業職業教育季刊,103,8-13。
13. 黃宗顯(2004)。應用教師自我評鑑促進教師專業發展。教育研究月刊,11,45-54。
14. 黃俊榮(2005)。技職教育教學評量之問題探討。師說,189,32-34。
15. 黃榮村(2003)。從國際化觀點展望台灣二十一世紀的教育。國家政策季刊,2(3),1-26。