跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖麗娜
研究生(外文):Li-na Liao
論文名稱:雙馬可夫轉換變異數異質性模式
論文名稱(外文):Double Markov Switching GARCH Models
指導教授:陳婉淑
學位類別:碩士
校院名稱:逢甲大學
系所名稱:統計與精算所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:69
中文關鍵詞:變異數異質性風險值貝氏方法馬可夫鏈蒙地卡羅法不對稱的均數復歸
外文關鍵詞:uneven mean revertingBayesian inferenceMCMC methodsVaRheteroscedasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:2
在本文中,我們提出一種非線性的轉換模型—具有厚尾誤差分配的雙馬可夫轉換變異數異質性模式(Double Markov switching GARCH model),來分析平均數及波動的不對稱效果,此模型的特色是門檻變數為一個無法觀察到的變數,其為一階的馬可夫過程。在貝氏方法的架構下,對參數做分析並使用馬可夫鏈蒙地卡羅法進行疊代及估計。在模擬研究中,我們針對轉換機率(transition probabilities) 事前分配做敏感度分析,並比較其參數估計結果。而在實例分析中採用美國S&P 500 之股價報酬率來解釋其他市場之外溢效果,我們應用具有外生變數的雙馬可夫轉換變異數異質性模式,並以法國、德國、義大利、英國、加拿大及日本之股價報酬率為研究對象。而在風險值的部分,我們除了去做風險值的估計外,也採用兩種較客觀的統計檢定方法來檢驗各種風險值模型是否正確估計風險值,與本文中提到的其他模式比較,利用具有外生變數的雙馬可夫轉換變異數異質性模式較能正確地估計出風險值。
In this paper we consider a double Markov switching GARCH model with fat-tailed error distribution for analyzing asymmetric effects on mean and volatility in financial markets. The characteristic of our model is that a regime variable from one state to another is an unobserved variable which is assumed to be a first-order Markov process. We use Markov chain Monte Carlo methods to make statistical inference. In simulation study, we set sensitivity analysis for transition probabilities and then compare these results. As to empirical study, we apply for our DMS-GARCH model with an exogenous variable to capture the asymmetric mean and volatility spillover effects. We consider six daily stock market indices including the CAC 40 of France, ADX 30 of Germany, Milan MIBTel Index of Italy, FTSE 100 of United Kingdom, the Toronto SE 300 of Canada, and Nikkei 225 Index of Japan and employ the daily return on US Standard and Poor''s 500 Index (S&P 500) as an exogenous variable. The data cover the period from 4 January 1999 to 28 April 2006. We also forecast VaR and use two hypothesis-testing methods for evaluating the accuracy of VaR models. These results tell us that our DMS-GARCH model with an exogenous variable performs much better than other considered models.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Bayesian inference . . . . . . . . . . . . . . . . . . 4
3 Testing model adequacy and Value at Risk . . . . . . . 8
3.1 Diagnostic checking of model adequacy . . . . . . . .8
3.2 Forecasting Value at Risk . . . . . . . . . . . . . .9
4 Simulation study . . . . . . . . . . . . . . . . . . 12
5 Empirical study . . . . . . . . . . . . . . . . . . .15
5.1 Data and estimate results . . . . . . . . . . . .. .15
5.2 Value at Risk . . . . . . . . . . . . . . . . . . . 18
6 Conclusion . . . . . . . . . . . . . . . . . . . . . .21
Appendix . . . . . . . . . . . . . . . . . . . . . . . 22
A Markov chain Monte Carlo methods . . . . . . . . . . 22
A.1 Gibbs sampler . . . . . . . . . . . . . . . . . . . 22
A.2 Metropolis-Hastings (MH) algorithm . . . . . . . . .23
B Conditional posterior distributions of probabilities . 24
C Conditional posterior distributions of states . . . . 26
References. . . . . . . . . . . . . . . . . . . . . . . 28
References
Brooks, C. (2001). A double-threshold GARCH model for the French Franc/Deutschmark exchange rate. Journal of Forecasting, 20, 135-143.
Cai, J. (1994). A Markov model of switching-regime ARCH. Journal of Business and Economic Statistics, 12, 309-316.
Chen, C. W. S. and So, M. K. P. (2006). On a threshold heteroscedastic model. International Journal of Forecasting, 22, 73-89.
Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39, 841-862.
Dueker, M. J. (1997). Markov switching in GARCH processes and mean-reverting stock market volatility. Journal of Business and Economic Statistics, 15, 26-34.
Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility. Journal of Financial Economics, 48, 1749-1778.
Franses, P. H. and van Dijk, D. (2000). Non-linear time series models in empirical finance. Cambridge University Press, UK.
Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). Efficient Metropolis jumping rules. In Bayesian Statistics 5, 599-607, edited by Bernardo, J. M., Berger, J. O.,
Dawid, A. P., and Smith, A. F. M.. Oxford University Press, Oxford.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images. IEEE Transaction, on Patter Analysis and Machine Intelligence, 6, 721-741.
Glosten, L. R., Jagannanthan, R., and Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779-1801.
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357-384.
Hamilton, J. D. and Susmel, R. (1994). Autoregressive conditional heteroscedasticity and changes in regime. Journal of Econometrics, 64, 307-333.
Hastings, W. K. (1970). Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Jorion, P. (1997). Value at Risk: The new benchmark for controlling market risk. McGraw-Hill, Chicago.
Kim, C. J. (1993). Unobserved-components time series models with Markov switching heteroscedasticity: changes in regime and the link between inflation rates and inflation uncertainty. Journal of Business and Economic Statistics, 11, 341-349.
Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics, 27, 363-394.
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3, 73-84.
Li, C. W., and Li, W. K. (1996). On a double-threshold autoregressive heteroscedastic time series model. Journal of Applied Econometrics, 11, 253-274.
McCulloch, R. E. and Tsay, R. S. (1994). Statistical analysis of economic time series via Markov switching models. Journal of Time Series Analysis, 15, 523-539.
Metroplis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1091.
Nelson, D. B. (1991). Conditional heteroscedasticity in asset returns: a new approach. Econometrica, 59, 347-370.
So, M. K. P., Chen, C. W. S., and Chen, Ming-Tien (2005). A Bayesian threshold nonlinearity test for financial time series. Journal of Forecasting, 24, 61-75.
Tong, H. (1978). On a threshold model. In Pattern Recognition and Signal Processing, ed. Chen, C. H., Sijhoff and Noordhoff, Amsterdam.
Tong, H. (1983). Threshold models in non-linear time series analysis. Vol. 21 of Lecture Notes in Statistics. Springer-Verlag, New York.
Tong, H. (1990). Non-linear time series: a dynamical system approach. Oxford University Press, Oxford.
Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data (with discussion). Journal of the Royal Statistical Society, Series B (Methodological), 42, 245-292.
Tsay, R. S. (2002). Analysis of financial time series. John Wiley and Sons, USA.
Yoo, B. H. (2004). A Bayesian analysis of Markov switching models with ARMAGARCH error. Working paper, Rutgers University.
Zakoian, J. M. (1994). Threshold heteroscedastic models. Journal of Economic Dynamics and Control, 18, 931-955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top