跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠宏
研究生(外文):CHEN, KUAN-HUNG
論文名稱:以多時間尺度重力變化估計含水層比出水率
論文名稱(外文):Estimation of aquifer specific yields by gravity changes at multiple time scales
指導教授:黃金維黃金維引用關係
指導教授(外文):Hwang Cheinway
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:比出水率地下水重力
外文關鍵詞:Specific yieldGroundwaterGravity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
比出水率(Specific yield,Sy)是未受壓含水層的儲水比例參數,也是評估地下水庫儲量的重要參數。傳統上,比出水率只能透過人為主動引起的小規模水位變化之抽水試驗獲得,而昂貴的鑿井費用是比出水率參數很少的主要原因。地下水位變化會引起重力變化與地表變形,可以利用大地測量方法估計Sy與儲水係數(Storage coefficient,S)。前人研究多以模擬方式指出抽水期間的重力與地表變形,相較於此,本研究著重利用精密水準與重力測量方法,在野外實際量測不同時間尺度(自小時到年),由地下水位變化引起的重力變化與地表變形,並藉此估計含水層的儲水係數。本研究於台灣數個短期的抽水試驗,以精密水準測儀與絕對重力儀,觀測抽水期間的地表變形與重力變化。內城抽水試驗期間,以大地測量方法估計之S=2.97×10-4、Sy =0.20,與水力試驗結果一致。在中時間尺度的Sy參數估計,本研究以新民地區,大雨事件後含水層快速退水與重力變化之一致性結果,推算新民地區之Sy =0.16,與最鄰近的抽水試驗之結果近似。在較大尺度的跨季節試驗,本研究在2015至2017年間,設立10個絕對重力測站,於濁水溪沖積扇之扇頂地區與名竹盆地地區,一共量測40組重力變化值。跨季節量的測結果顯示,重力方法估計之Sy值介於0.04至0.28之間,與水力試驗結果之Sy為0.03至0.24的結果一致。本研究結果建議,利用地下水位的連續上升與下降,即可達到在相同的含水層區間,重複進行抽水與注水試驗,而利用重力方法,可以在跨季節試驗中,獲得穩定且經濟的的比出率參數。本研究以重力方法在濁水溪沖積扇與名竹盆地,跨季節與多站點的Sy估計結果與水力試驗結果一致,足以顯示重力方法的可操作性與穩定性。異質性地層會影響影響抽水試驗結果,但重力方法估計之比出水率參數,更具有區域代表性。本研究將討論在實際野外試驗時,大地測量方法用於估計儲水系數的限制與優勢。本研究的相關經驗將有助於類似實驗前的可行性評估。
Specific yield (Sy) is the ratio of drainable groundwater in an unconfined aquifer and also a key parameter for evaluating the storage of an underground reservoir. Conventionally, Sy is obtained by pumping tests which manually create a small scaled groundwater level change, but the high cost of well construction restricts the well numbers in the field. Groundwater level change will introduce gravity and land surface change, which can be used to estimate Sy and storage coefficient (S) by the geodetic method. Earlier studies for the geodetic method are largely based on simulated gravity and surface changes. In comparison, this study focuses on field measurements of gravity and surface change to determine these aquifer coefficients using precision gravimeters and levels at time scales ranging from hours to years. For short-time scales, we used a precise level and absolute gravimeter to detect the land surface change and gravity change during several pumping tests in Taiwan. At the Neicheng pumping test site, the geodetic method results in S=2.97×10-4 and Sy =0.20, which are consistent with the pumping test result. For the median time scale of Sy determination, we used a post-rain aquifer recession that introduced declines in groundwater levels and in gravity values at Shinming. These groundwater level and gravity change result in Sy =0.16, which is close to the Sy value at a nearby pumping test site. For the long time scale, we established 10 absolute gravity sites over the upper Choushui River Alluvial Fan (CRAF) and Mingchu basin (MCB), where we measured 40 successive gravity changes to estimate Sy values over several seasons from 2015 to 2017. The estimated Sy values range from 0.04 to 0.28, which are consistent with those determined by the hydraulic method which ranges from 0.03 to 0.24. The result from this study suggests that the sequentially uplift and decline of groundwater levels work much like pumping and injection test at the same segment of an aquifer, which can be sensed by a precise gravimeter. This gravity method (the geodetic method that uses gravity changes) is cost-effective and can produce reliable Sy values using successive groundwater and gravity changes between seasons. At most of the gravity sites in the CRAF and MCB, the gravity method produced almost the same Sy values from groundwater and gravity changes spanning wet and dry seasons in different years, suggesting that this method is operational and reliable for Sy determination, as the hydraulic method. The gravity method is not affected by the heterogeneity of an aquifer that can damage the result from the hydraulic method. The study discusses the limitations and advantages of the geodetic method in estimating aquifer storage coefficients in the field. The lessons of the gravity field work from this study contribute to assessing the feasibility of the geodetic method at a given site.
圖目錄 III
表目錄 VI
第一章 前言 1
1-1 研究背景與目的 1
1-2 文獻回顧 3
1-3 論文架構 5
第二章 絕對重力量測與變化 6
2-1 絕對重力測量 6
2-2 重力變化來源 11
2-3 重力變化與地下水變化之關係 13
第三章 水文地質參數與抽水試驗 15
3-1 地下含水層的儲水比例 15
3-2 水力試驗-複井抽水試驗 18
3-3 地下水位模擬-MODFLOW 22
第四章 短至中尺度的重力變化 24
4-1 未受壓含水層之定量抽水試驗與重力變化 24
4-1-1 內城抽水試驗與重力變化 29
4-1-2 草屯抽水試驗與重力變化 30
4-1-3 模擬抽水試驗的水位分佈 31
4-2 含水層快速退水與重力變化量測 35
4-3 分級試水與地表變形測量 37
4-4 抽水試驗期間的重力實驗設計 39
4-5 改良抽水試驗期間的地表變形觀測 45
第五章 跨季節重力變化量測與比出水率估計 47
5-1 濁水溪沖積扇簡介 47
5-2 實驗設計 51
5-3 實驗結果與討論 53
5-3-1綜合概述 53
5-3-2社寮國中(SLJH) 57
5-3-3新民村辦公室(SMOF) 60
5-3-4竹山國小(JSES)與雲林國小(YLES) 61
5-3-6 溪陽國中(HYJH) 63
5-3-6 溪洲國小(SJES) 65
5-3-7 六合國小(LHES) 67
5-3-8 莿桐國小(TTPS) 69
5-3-8 中山國小(CSES) 70
5-3-9 二崙國小(ELPS) 71
第六章 討論 76
6-1 未飽和層的土壤濕度變化影響 76
6-2 重力方法估計S_y的不確定度 80
6-3 不同S_y估計方法的差異 84
6-4 重力方法的優勢 88
6-5 執行重力方法SOP 91
第七章 結論與建議 92
參考文獻 94
Biolcati, E., Svitlov, S., and Germak, A. (2012). "Self-attraction effect and correction on three absolute gravimeters." Metrologia, 49(4), 560-566.
Blainey, J. B., Ferré, T. P. A., and Cordova, J. T. (2007). "Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing." Water Resources Research, 43(12).
Bonì, R., Cigna, F., Bricker, S., Meisina, C., and McCormack, H. (2016). "Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data." Journal of Hydrology, 540, 835-849.
Boulton, N. S. (1963). "Analysis of data from pumping tests in unconfined anisotropic aquifers." Proceedings of the Institution of Civil Engineers, 26(3), 469-482.
Boy, J.-P., and Hinderer, J. (2006). "Study of the seasonal gravity signal in superconducting gravimeter data." Journal of Geodynamics, 41(1-3), 227-233.
Burbey, T. J., Warner, S. M., Blewitt, G., Bell, J. W., and Hill, E. (2006). "Three-dimensional deformation and strain induced by municipal pumping, part 1: Analysis of field data." Journal of Hydrology, 319(1-4), 123-142.
Charbeneau, R. J. (2006). Groundwater hydraulics and pollutant transport, Waveland Press.
Chen, K. H., Hwang, C., Chang, L. C., and Ke, C. C. (2018). "Short‐Time Geodetic Determination of Aquifer Storage Coefficient in Taiwan." Journal of Geophysical Research: Solid Earth.
Chen, X., Goeke, J., and Summerside, S. (1999). "Hydraulic properties and uncertainty analysis for an unconfined alluvial aquifer." Ground Water, 37(6), 845-854.
Chiang, C. J., Lin, Y.-C., and Chen, C.-L. (2011). "A study on the relation models between groundwater level fluctuation and land elevation change." Special Publication of the Central Geological Survey 24, 22-29.
Christiansen, L., Binning, P. J., Rosbjerg, D., Andersen, O. B., and Bauer-Gottwein, P. (2011). "Using time-lapse gravity for groundwater model calibration: An application to alluvial aquifer storage." Water Resources Research, 47(6).
Christiansen, L., Lund, S., Andersen, O. B., Binning, P. J., Rosbjerg, D., and Bauer-Gottwein, P. (2011). "Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions." Journal of Hydrology, 402(1-2), 60-70.
Creutzfeldt, B., Guntner, A., Thoss, H., Merz, B., and Wziontek, H. (2010). "Measuring the effect of local water storage changes on in situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany." Water Resources Research, 46(8).
Creutzfeldt, B., Troch, P. A., Güntner, A., Ferré, T. P. A., Graeff, T., and Merz, B. (2014). "Storage-discharge relationships at different catchment scales based on local high-precision gravimetry." Hydrological Processes, 28(3), 1465-1475.
Damiata, B. N., and Lee, T.-C. (2006). "Simulated gravitational response to hydraulic testing of unconfined aquifers." Journal of Hydrology, 318(1-4), 348-359.
De Linage, C., Hinderer, J., and Rogister, Y. (2007). "A search for the ratio between gravity variation and vertical displacement due to a surface load." Geophysical Journal International, 171(3), 986-994.
Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., and Xia, J. (2013). "Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements." Water Resources Research, 49(4), 2110-2118.
Gehman, C. L., Harry, D. L., Sanford, W. E., Stednick, J. D., and Beckman, N. A. (2009). "Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys." Water Resources Research, 45(4).
González-Quirós, A., and Fernández-Álvarez, J. P. (2014). "Simultaneous solving of three-Dimensional gravity anomalies caused by pumping tests in unconfined aquifers." Mathematical Geosciences, 46(6), 649-664.
Han, J., Tangdamrongsub, N., Hwang, C., and Abidin, H. Z. (2017). "Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE." Journal of Geophysical Research: Solid Earth.
Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process, US Department of the Interior, US Geological Survey Techniques and Methods 6-A16.
Hasan, S., Troch, P. A., Bogaart, P. W., and Kroner, C. (2008). "Evaluating catchment-scale hydrological modeling by means of terrestrial gravity observations." Water Resources Research, 44(8).
Herckenrath, D., Auken, E., Christiansen, L., Behroozmand, A. A., and Bauer-Gottwein, P. (2012). "Coupled hydrogeophysical inversion using time-lapse magnetic resonance sounding and time-lapse gravity data for hydraulic aquifer testing: Will it work in practice?" Water Resources Research, 48(1).
Hoffmann, J., Galloway, D. L., and Zebker, H. A. (2003). "Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California." Water Resources Research, 39(2).
Hsi, J. P., Carter, J. P., and Small, J. C. (1994). "Surface subsidence and drawdown of the water table due to pumping." Géotechnique, 44(3), 381-396.
Hwang, C., Cheng, T.-C., Cheng, C. C., and Hung, W. C. (2010). "Land subsidence using absolute and relative gravimetry: a case study in central Taiwan." Survey Review, 42(315), 27-39.
Hwang, C., Kao, R., Cheng, C.-C., Huang, J.-F., Lee, C.-W., and Sato, T. (2009). "Results from parallel observations of superconducting and absolute gravimeters and GPS at the Hsinchu station of Global Geodynamics Project, Taiwan." Journal of Geophysical Research, 114(B7).
Kao, R., Hwang, C., Kim, J. W., Ching, K.-E., Masson, F., Hsieh, W.-C., Moigne, N. L., and Cheng, C.-C. (2017). "Absolute gravity change in Taiwan: Present result of geodynamic process investigation." Terrestrial, Atmospheric and Oceanic Sciences, 28(6), 855-875.
Kennedy, J., Ferré, T. P. A., and Creutzfeldt, B. (2016). "Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone." Water Resources Research, 52(9), 7244-7261.
Kennedy, J., Rodríguez-Burgueño, J. E., and Ramírez-Hernández, J. (2017). "Groundwater response to the 2014 pulse flow in the Colorado River Delta." Ecological Engineering, 106, 715-724.
Kihm, J.-H., Kim, J.-M., Song, S.-H., and Lee, G.-S. (2007). "Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system." Journal of Hydrology, 335(1-2), 1-14.
Krause, P., Naujoks, M., Fink, M., and Kroner, C. (2009). "The impact of soil moisture changes on gravity residuals obtained with a superconducting gravimeter." Journal of Hydrology, 373(1-2), 151-163.
Kroner, C., and Jahr, T. (2006). "Hydrological experiments around the superconducting gravimeter at Moxa Observatory." Journal of Geodynamics, 41(1-3), 268-275.
Leirião, S., He, X., Christiansen, L., Andersen, O. B., and Bauer-Gottwein, P. (2009). "Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers." Journal of Hydrology, 365(3-4), 302-309.
Lien, T., Cheng, C.-C., Hwang, C., and Crossley, D. (2014). "Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan." Journal of Geophysical Research: Solid Earth, 119(9), 7319-7335.
Liu, Y., and Helm, D. C. (2008). "Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. Methods." Water Resources Research, 44(7).
Longuevergne, L., Boy, J. P., Florsch, N., Viville, D., Ferhat, G., Ulrich, P., Luck, B., and Hinderer, J. (2009). "Local and global hydrological contributions to gravity variations observed in Strasbourg." Journal of Geodynamics, 48(3-5), 189-194.
Maina, F. Z., and Guadagnini, A. (2018). "Uncertainty quantification and global sensitivity analysis of subsurface flow parameters to gravimetric variations during pumping tests in unconfined aquifers." Water Resources Research, 54(1), 501-518.
Menoret, V., Vermeulen, P., Le Moigne, N., Bonvalot, S., Bouyer, P., Landragin, A., and Desruelle, B. (2018). "Gravity measurements below 10(-9) g with a transportable absolute quantum gravimeter." Sci Rep, 8(1), 12300.
Meurers, B., Van Camp, M., and Petermans, T. (2007). "Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis." Journal of Geodesy, 81(11), 703-712.
Micro-g LaCoste, I. (2007). "FG5 Absolute Gravimeter User's Manual."
Miller, M. M., Shirzaei, M., and Argus, D. (2017). "Aquifer mechanical properties and decelerated compaction in Tucson, Arizona." Journal of Geophysical Research: Solid Earth, 122(10), 8402-8416.
Moench, A. F. (1995). Ground Water, 33(3), 378-384.
Moench, A. F., Garabedian, S. P., and LeBlanc, D. R. (2000). "Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts."
Mouyen, M., Canitano, A., Chao, B. F., Hsu, Y. J., Steer, P., Longuevergne, L., and Boy, J. P. J. G. R. L. (2017). "Typhoon‐induced ground deformation." 44(21), 11,004-011,011.
Mouyen, M., Masson, F., Hwang, C., Cheng, C. C., Cattin, R., Lee, C. W., Le Moigne, N., Hinderer, J., Malavieille, J., Bayer, R., and Luck, B. (2009). "Expected temporal absolute gravity change across the Taiwanese Orogen, a modeling approach." Journal of Geodynamics, 48(3-5), 284-291.
Neuman, S. P. (1974). "Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response." Water Resources Research, 10(2), 303-312.
Neuman, S. P. (1975). "Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response." Water Resources Research, 11(2), 329-342.
Piccolroaz, S., Majone, B., Palmieri, F., Cassiani, G., and Bellin, A. (2015). "On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling." Water Resources Research, 51(9), 7270-7288.
Pool, D. R. (2008). "The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona." Geophysics, 73(6).
Schuite, J., Longuevergne, L., Bour, O., Boudin, F., Durand, S., and Lavenant, N. (2015). "Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test." Geophysical Research Letters, 42(24), 10,696-610,703.
Smith, R. G., Knight, R., Chen, J., Reeves, J. A., Zebker, H. A., Farr, T., and Liu, Z. (2017). "Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California." Water Resources Research, 53(3), 2133-2148.
Su, M.-B., Su, C.-L., Chang, C.-J., and Chen, Y.-J. (1998). "A numerical model of ground deformation induced by single well pumping." Computers and Geotechnics, 23(1-2), 39-60.
Tartakovsky, G. D., and Neuman, S. P. (2007). "Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer." Water Resources Research, 43(1).
Timmen, L., and Wenzel, H. G. (1995). "Worldwide Synthetic Gravity Tide Parameters." Gravity and Geoid, 92-101.
Torge, W. (1989). Gravimetry, Walter de Gruyter, Berlin.
Tsai, J.-P., Yeh, T.-C. J., Cheng, C.-C., Zha, Y., Chang, L.-C., Hwang, C., Wang, Y.-L., and Hao, Y. (2017). "Fusion of time-lapse gravity survey and hydraulic tomography for estimating spatially varying hydraulic conductivity and specific yield fields." Water Resources Research.
Van Camp, M. (2003). Efficiency of tidal corrections on absolute gravity measurements at the Membach station.
Van Camp, M. (2005). "Uncertainty of absolute gravity measurements." Journal of Geophysical Research, 110(B5).
Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C. (2017). "Geophysics from terrestrial time-variable gravity measurements." Reviews of Geophysics, 55(4), 938-992.
Van Camp, M., Métivier, L., de Viron, O., Meurers, B., and Williams, S. D. P. (2010). "Characterizing long-time scale hydrological effects on gravity for improved distinction of tectonic signals." Journal of Geophysical Research, 115(B7).
Van Camp, M., Vanclooster, M., Crommen, O., Petermans, T., Verbeeck, K., Meurers, B., van Dam, T., and Dassargues, A. (2006). "Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations." Journal of Geophysical Research, 111(B10).
Wahr, J., Swenson, S., Zlotnicki, V., and Velicogna, I. (2004). "Time-variable gravity from GRACE: First results." Geophysical Research Letters, 31, L11501.
Yeh, H.-D., and Huang, Y.-C. (2009). "Analysis of pumping test data for determining unconfined-aquifer parameters: Composite analysis or not?" Hydrogeology Journal, 17(5), 1133-1147.
Zerbini, S., Richter, B., Rocca, F., van Dam, T., and Matonti, F. (2007). "A Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy." Journal of Geophysical Research, 112(B5).
Zhang, C.-C., Shi, B., Gu, K., Liu, S.-P., Wu, J.-H., Zhang, S., Zhang, L., Jiang, H.-T., and Wei, G.-Q. (2018). "Vertically Distributed Sensing of Deformation Using Fiber Optic Sensing." Geophysical Research Letters.
中央地質調查所(2014) 地下水補注地質敏感區劃定計畫書G0001濁水溪沖積扇,中央地質調查所(https://www.moeacgs.gov.tw/)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top