跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠勳
研究生(外文):Guan-Shiun Lee
論文名稱:差動式渦電流探頭於缺陷偵測之最佳激發頻率研究
論文名稱(外文):Optimal Excitation Frequency for Defect Detection with Differential Eddy-Current Probe
指導教授:鄭振宗鄭振宗引用關係
指導教授(外文):Jen-Tzong Jeng
口試委員:蘇春熺洪振義
口試委員(外文):Chun-Hsi SuChin-Yih Hong
口試日期:2005-07-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:66
中文關鍵詞:渦電流非破壞檢測最有效激發頻率差動式探頭
外文關鍵詞:Eddy currentNon-destructive testingOptimal excitation frequencyDifferential probe
相關次數:
  • 被引用被引用:7
  • 點閱點閱:899
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
渦電流檢測法在工業上的應用極廣,但是由於一般的渦電流機台均操作在較高的磁場激發頻率且受到材料在此時較低的肌膚深度的限制,通常只能對表面及近表面的缺陷作檢測。而本研究使用差動式線圈探頭分別以梯度計及磁量計的方式作比較,在良導體鋁層板的情況之下;其操作頻率最低可以到10 Hz且可檢測的裂縫缺陷深度達12.5 mm。而訊雜比的表現在使用作梯度計的檢測方式時,於60 Hz的環境磁場之下仍然有不錯的效果。並且不論是以梯度計或是磁量計的形式對缺陷作深度判斷的結果,其深度對感應訊號延遲相位角之間的線性變化斜率仍幾乎相同。
另外由於探頭尺寸的關係,差動式探頭在小面積圓孔缺陷輪廓檢測的效果並不佳,僅能就缺陷位置作定位的功能。但由其感應訊號的分析結果仍然可以發現其在缺陷深度判斷上的應用與裂縫缺陷的作法有極為接近的關係,且不受到探頭激磁或檢磁形式的影響。不過由於缺陷外形的差異,在訊號的分析方法上則與裂縫缺陷時略有不同。
而差動式探頭在兩種不同形式的檢測應用時,以本研究所使用之良導體鋁層板的試驗結果;其不同深度之下的最有效激發頻率範圍略有差異,但仍大約在80 Hz至1000 Hz之間,對於以相位延遲角的變化作缺陷深度判斷的能力仍然足夠。
The eddy-current non-destructive evaluation (EC NDE) is a powerful method of flaw detection in industrial applications. The conventional EC NDE instrument is very sensitive to the surface-breaking crack. However, they are not suitable for the detection of deep-lying cracks in good conductors since the skin depth is small at the typically high excitation frequencies from 0.1 MHz to 10 MHz. In this work, we design and fabricate the differential eddy-current probe consisting of differential and absolute induction coils. The eddy-current probe can be operated either with the differential coil as the gradiometer and the absolute coil as the exciter, or the absolute coil as the magnetometer and the differential coil as the exciter. For detecting the crack in layered aluminum sheets, the lowest excitation frequency of the probe is 10 Hz, and the detectable depth of the crack is as deep as 12.5 mm. Notably, the power-line magnetic interference is reduced with the induction coil gradiometer. The signal-to-noise ratio of the gradiometer probe is better that of the magnetometer probe at 60 Hz. The optimal excitation frequency at varies flaw depth is slightly different between the gradiometer and the magnetometer. The range of the optimal frequency is from 80 Hz to 1000 Hz for the layered aluminum sheets with the crack depth from 12.5 mm to 0.5 mm. The signal-to-noise at varies excitation frequencies shows that both the gradiometer and magnetometer probes are suitable for flaw depth evaluation.
The linear relationship between phase lag angle and flaw depth for the cylindrical flaw is almost the same as that for the crack-like flaw by using either the gradiometer probe or the magnetometer probe. Moreover, the slope of the linear relation between the phase lag angle and the flaw depth varies with the skin depth in the same way for crack-like flaws and cylindrical flaws. However, both probes are not sensitive to the profile of small cylindrical flaws due to the large probe-size. Nevertheless, the eddy-current magnetic field map of the cylindrical flaw is generally different from that of the crack-like flaw. This implies that further information about the shape of flaw may be extracted from the eddy-current mapping measured with the proposed eddy-current probe.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究範圍 2
第二章 文獻回顧 3
2.1 渦電流檢測法 3
2.2 低頻渦電流檢測 3
第三章 實驗原理與方法 5
3.1 感應線圈原理 5
3.2 實驗方法 8
3.2.1 實驗用測試件 9
3.2.2 二維平台與夾具 9
3.2.3 平台驅動模組 11
3.2.4 磁量計與梯度計校正線圈 14
3.3 程式架構 18
3.3.1 RS-232與PLC通訊控制 19
3.3.2 一維掃描程式流程 20
3.3.3 二維掃描程式流程 23
3.3.4 雜訊量測 25
第四章 結果與討論 27
4.1 探頭磁場特性校正結果 27
4.2 雜訊頻譜 31
4.3 相位對頻率及深度變化曲線 33
4.4 最有效激發頻率 40
第五章 二維缺陷輪廓及現象討論 49
5.1 二維掃描 49
5.2 圓孔缺陷之相角對位置關係 52
5.3 圓孔缺陷之最有效激發頻率 56
第六章 結論與未來展望 62
6.1 結論 62
6.2 未來展望 63
參考文獻 64
[1]John P. Wikswo, Jr., “SQUID Magnetometers for Biomagnetism and Nondestructive Testing: Important Questions and Initial Answers,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, 1995, pp. 74-120.
[2]H. Fukutomi, T. Takagi, and M. Nishikawa, “Remote field eddy current technique applied to non-magnetic steam generator tubes,” NDT&E International, vol. 34, 2001, pp. 17-23.
[3]P. C. Rem, E. M. Beunder, and A. J. van den Akker, “Simulation of Eddy-Current Separators,” IEEE Trans. on Magnetics, vol. 34, no. 4, 1998, pp. 2280-2286.
[4]劉福順,湯明,無損檢測基礎,北京:北京航空航天大學,2002。
[5]王仲生,無損檢測診斷現場實用技術,北京:機械工業出版,2002。
[6]Yoshihiro Nonaka, “A Double Coil Method for Simultaneously Measuring the Resistivity, Permeability, and Thickness of a Moving Metal Sheet,” IEEE Trans. Inst.& Measurement, vol. 45, no. 2, 1996, pp. 478-482.
[7]李家傳,陳積懋,無損檢測手冊,北京:機械工業出版,2002。
[8]C. C. Tai, J. H. Rose, and J. C. Moulder, “Thickness and Conductivity of Metallic Layers from Pulsed Eddy Current Measurements,” Rev. Sci. Instrum., vol. 67, 1996, pp. 3965-3972.
[9]W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr., “SQUIDs for Non-Destructive Evaluation,” J. of Physics D: Appl. Phys., vol. 30, 1997, pp. 293-323.
[10]J. B. Hull, and V. B. John, Non-destructive testing, London: MacMillan Education LTD., 1988.
[11]H. Weinstock, “A review of SQUID magnetometry applied to nondestructive evaluation,” IEEE Trans. Mag., vol. 27, no. 2, 1991, pp. 3231-3236.
[12]R. Cantor, L. P. Lee, M. Teepe, V. Vinetskiy, and J. Longo, “Low-noise single-layer YBa2Cu3O7-x DC-SQUID magnetometers at 77 K,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, 1995, pp. 2927-2930.
[13]Y. Zhang, W. Zander, J. Schubert, F. Rueders, H. Soltner, H.-J. Krause, M. Banzet, N. Wolters, X. H. Zeng, and A. I. Braginski, “Operation of high-sensitivity radio frequency superconducting quantum interference device magnetometers with superconducting coplanar resonators at 77K,” Appl. Phys. Lett., vol. 71, no. 5, 1997, pp. 704–706.
[14]N. Tralshawala, J. R. Claycomb, and J. H. Miller Jr., “Practical SQUID instrument for nondestructive testing,” Appl. Phys. Lett., vol. 71, no. 11, 1997, pp. 1573-1575.
[15]M. V. Kreutzbruck, J. Troll, M. Muck, C. Heiden, and Y. Zhang, “Experiments on eddy current NDE with HTS rf SQUIDS,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, 1997, pp. 3279-3282.
[16]J. T. Jeng, H. E. Horng, and H. C. Yang, “High-Tc SQUID magnetometers and gradiometers for NDE application,” Physica C, vol. 368, 2002, pp. 105-108.
[17]J. T. Jeng, S. Y. Yang, H. E. Horng, and H. C. Yang, “Detection of Deep Flaws by Using a HTS-SQUID in Unshielded Environment,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, 2001, pp. 1295-1298.
[18]Y. Zhang, H. Soltner, H.-J. Krause, E. Sodtke, W. Zander, J. Schubert, M. Grüneklee, D. Lomparski, M. Banzet, H. Bousack, and A. I. Braginski, “Planar HTS Gradiometers with Large Baseline,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, 1997, pp. 2866-2869.
[19]C. V. Dodd, and W. E. Deeds, “Analytical solutions to eddy-current probe-coil problems,” J. Appl. Phys., vol. 39, no. 6, 1968, pp. 2829-2838.
[20]J. R. Claycomb, N. Tralshawala, H. M. Cho, M. Boyd, Z. Zou, X. W. Xu, and J. H. Miller, Jr., “Simulation and Design of Superconducting Eddy Current Probes for Nondestructive Testing,” Review of Scientific Instruments, vol. 69, 1998, pp. 499-506.
[21]J. T. Jeng, H. E. Horng, H. C. Yang, J. C. Chen, and J. H. Chen, “Simulation of the magnetic field due to defects and verification using high-Tc SQUID,” Physica C, vol. 367, 2002, pp. 298-302.
[22]Jen-Tzong Jeng, Guan-Shiun Lee, Hsin-Chin Hung, Ju-Chien Chen, Wen-Sung Chiou, Li-Lun Chen, Ji-Cheng Chen, Chiu-Hsien Wu, Hong-Chang Yang, and H. E. Horng, Proc. of 6th European Conference on Applied Superconductivity (EUCAS 2003), Sorrento, 2003.
[23]H. E. Horng, J. T. Jeng, H. C. Yang, and J. C. Chen, “Evaluation of the flaw depth using high-Tc SQUID,” Physica C, vol. 367, 2002, pp. 303–307.
[24]J. T. Jeng, H. Y. Lee, J. C. Chen, J. H. Chen, C. H. Wu, H. C. Yang, and H. E. Horng, “Integrated planar HTS SQUID gradiometer for NDE application,” J. Low Temp. Phys., vol. 131, no. 3-4, 2003, pp. 521-526.
[25]范逸之,江文賢,陳立元,C++ Builder 與RS-232 串列通訊控制,臺北:文魁資訊,2002。
[26]可程式控制器FP0 使用者操作手冊,松下電工,2002。
[27]K.-P. Estola, and J. Malmivuo, “Air-core induction-coil magnetometer design,” J. Physic. E: Sci. Instrum, vol. 15, 1982, pp. 1110-1113.
[28]Don E. Bray, and Roderic K. Stanley, Nondestructive Evaluation, New York: McGraw-Hill, 1989.
[29]Nathan Ida, Numerical Modeling for Electromagnetic Non-Destructive Evaluation, London: Chapman and Hall, 1995.
[30]Walter N. Podney, “Performance measurements of a superconductive microprobe for eddy current evaluation of subsurface flaws,” IEEE Trans. Appl. Supercond., vol. 3, no. 1, 1993, pp. 1914-1917.
[31]J. Hansen, “The eddy current inspection method Part 1. History and electrical theory,” Insight, vol. 46, no. 5, 2004, pp. 279-281.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top