跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉穎瑄
研究生(外文):Ying-Hsuan Liu
論文名稱:第一部分 7-胺基奎寧衍生物之激發態分子間質子轉移的合成與研究第二部分 1-胺基-7-氮雜吲哚衍生物之激發態平面化分子內電荷轉移的合成與研究
論文名稱(外文):Part I: Synthesis and Study of Excited-State Intermolecular Proton Transfer in 7-Aminoquinoline and its DerivativesPart II: Synthesis and Study of Planarized Intramolecular Charge Transfer in 1-Amino-7-azaindole and its Derivatives
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
口試委員:何美霖趙啟民
口試委員(外文):Mei-Lin HoChi-Min Chau
口試日期:2018-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:59
中文關鍵詞:激發態分子間質子轉移胺基類激發態分子間質子轉移推拉電子基激發態平面化分子內電荷轉移大斯托克斯位移
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在第一章節中,我們想探討分子激發態質子轉移的反應機制,透過合成出的7AQ以及其他在胺基上具有推拉電子基團的衍生物來做光物理的研究。由於7AQ系列化合物的質子接受端與給予端距離遙遠,需透過溶劑當介質才能進行激發態質子轉移的反應。在使用甲醇當溶劑的分子光譜中,我們發現只有接上拉電子基團的TFA-7AQ、Ts-7AQ、Boc-7AQ以及Ac-7AQ有產生激發態質子轉移,但是接上不同強度的拉電子基團的分子進行激發態質子轉移的速率卻是相近的,這結果發現與我們實驗室之前對於分子內激發態質子轉移反應的研究結果並不同;然而,透過在水中的酸鹼滴定測量,我們發現胺基上接著的推拉電子基不僅會改變質子給予端的酸度,同時也會透過共軛效應去變化質子接受端的鹼度,因此造成分子間激發態質子轉移速率近似的結果。
在第二章節中,我們想討論由扭曲型分子內電荷轉移延伸出的平面化分子內電荷轉移的反應機制,透過合成的7AI以及其衍生物diMeN-7AI及AcNH-7AI來進行光物理性質的檢測:在以環己烷當溶劑的量測中,我們發現7AI跟diMeN-7AI的吸收與放光具有130 nm、158 nm的大範圍位移以及高放光效率,印證分子在激發態有進行平面化的構型變化,然而AcNH-7AI卻是分別在323 nm及380 nm放出螢光,推測是只有部分完成了平面化的過程,其他則是以原構型放出螢光;另外,我們也在乙腈中量測光譜,7AI跟diMeN-7AI的吸收峰與紅移的放出峰具有210 nm、230 nm的更加大範圍位移,而AcNH-7AI則是變成單一螢光在420 nm的位置。由於環己烷為非極性溶液,分子無法在之中進行分子內電荷轉移,因此我們認為平面化分子內電荷轉移的機制為:當分子受激發時傾向旋轉單鍵,透過平行的胺基孤對電子對以及芳香環的π電子讓分子電荷分佈可以更游離,以降低分子在激發態時的能量。然而,由於乙醯基的結構較大、環己烷的粘性也較大,才導致AcNH-7AI在環己烷中無法完全順利翻轉成平面化的構型。
Part I
7-Aminoquinoline (7AQ) and its amino derivatives have been designed and synthesized to study their possible excited-state proton transfer (ESPT) reaction. Due to the far separation between the proton donor NR-H (D) and acceptor –N (A) sites, ESPT in 7AQ and analogues, if available, should proceed with solvent catalysis process. As a result, assisted by solvent molecules, TFA-7AQ, Ts-7AQ, Boc-7AQ and Ac-7AQ undergoes ESPT in alcohols such as methanol. Systematically probing ESPT spectroscopy and dynamics among all NR-H derivatives has been carried out in methanol. However, unlike the NR-H intramolecular system where the rate of excited-state intramolecular proton transfer (ESIPT) increases as increasing the NR-H acidity, the rate of solvent catalyzed ESPT was found to lack correlation with respect to the NR-H acidity among all NRH derivatives. The results are rationalized by the fact that increase of the NR-H acidity by the stronger electron withdrawing R group concurrently decreases the basicity of the quinolone nitrogen via resonance inductive effect.

Part II
In an aim to explore the mechanism of planarized intramolecular charge transfer (PLICT), we have synthesized 1-amino-7-azaindole (NH2-7AI) and N-amination derivatives, diMeN-7AI and AcNH-7AI. Because amino group is twisted in the ground states and becomes planarized in the excited states, this provides a powerful method to tune a very large Stokes shift and simultaneously emit high quantum yields in molecular spectroscopy. Measured in cyclohexane, apolar solvent, NH2-7AI and diMeN-7AI were investigated the large Stokes shifts amounting to about λ = 130 nm and 158 nm. This phenomenon can be rationally interpreted that in the excited states N-substituent molecules tend to delocalize electronic distribution via the lone pair electrons on nitrogen. Once the nitrogen lone pair electrons are coupled with aromatic π electrons through planarization, the molecules can potentially decrease excited-state energy. On the other hand, AcNH-7AI depicted a dual emission in cyclohexane at 323 nm and 380 nm, which could be implied as vertical state and planar state. In acetonitrile, polar solvent, AcNH-7AI was observed a large Stokes shift at 420 nm, progressing PLICT. Obviously, acetyl group is larger than dimethyl group, and the value of viscosity of cyclohexane is higher than that of acetonitrile, which results in the hinder of planarization. It is notable, consequently, that the size of substituent and viscosity of solvent are also the key elements of PLICT.
摘要 i
ABSTRACT ii
LIST OF FIGURES v
LIST OF TABLES ix
Chapter 1 1
Introduction 1
Results and Discussion 2
Computational analysis 8
Conclusion 9
Experiment Section 10
References 16
Supplementary Information 18
Chapter 2 37
Introduction 37
Results and Discussion 39
Conclusion 49
Experiment Section 50
Reference. 52
Supporting Information. 56
Part 1.
1.Huang, J., et al., A spectroscopic study of the excited state proton transfer processes of (8-bromo-7-hydroxyquinolin-2-yl) methyl-protected phenol in aqueous solutions. Photochemical & Photobiological Sciences, 2017. 16(4): p. 575-584.
2.Park, H.J., et al., Excited-State Tautomerization Dynamics of 7-Hydroxyquinoline in β-Cyclodextrin. The Journal of Physical Chemistry B, 2005. 109(9): p. 3938-3943.
3.Itoh, M., T. Adachi, and K. Tokumura, Time-resolved fluorescence and absorption spectra and two-step laser excitation fluorescence of the excited-state proton transfer in the methanol solution of 7-hydroxyquinoline. Journal of the American Chemical Society, 1984. 106(4): p. 850-855.
4.Prommin, C., et al., Theoretical Insights on Solvent Control of Intramolecular and Intermolecular Proton Transfer of 2-(2''-Hydroxyphenyl)benzimidazole. J Phys Chem A, 2017. 121(31): p. 5773-5784.
5.de Grotthius, C., LI. Memoir upon the decomposition of water, and of the bodies which it holds in solution, by means of galvanic electricity. The Philosophical Magazine, 1806. 25(100): p. 330-339.
6.Park, S.-Y., et al., Proton transport of water in acid–base reactions of 7-hydroxyquinoline. Chemical Communications, 2009(8): p. 926-928.
7.Kwon, O.H. and O.F. Mohammed, Water-wire catalysis in photoinduced acid-base reactions. Phys Chem Chem Phys, 2012. 14(25): p. 8974-80.
8.Chung, K.Y., et al., The Excited-State Triple Proton Transfer Reaction of 2,6-Diazaindoles and 2,6-Diazatryptophan in Aqueous Solution. J Am Chem Soc, 2017. 139(18): p. 6396-6402.
9.Tolbert, L.M. and K.M. Solntsev, Excited-State Proton Transfer:  From Constrained Systems to “Super” Photoacids to Superfast Proton Transfer. Accounts of Chemical Research, 2002. 35(1): p. 19-27.
10.Ditkovich, J., D. Pines, and E. Pines, Controlling reactivity by remote protonation of a basic side group in a bifunctional photoacid. Phys Chem Chem Phys, 2016. 18(24): p. 16106-15.
11.Penedo, J.C., M. Mosquera, and F. Rodríguez-Prieto, Role of Hydrogen-Bonded Adducts in Excited-State Proton-Transfer Processes. The Journal of Physical Chemistry A, 2000. 104(32): p. 7429-7441.
12.Brenlla, A., et al., Moderately Strong Photoacid Dissociates in Alcohols with High Transient Concentration of the Proton-Transfer Contact Pair. The Journal of Physical Chemistry Letters, 2014. 5(6): p. 989-994.
13.Chou, P.-T., et al., Water-Catalyzed Excited-State Double Proton Transfer in 3-Cyano-7-azaindole:  The Resolution of the Proton-Transfer Mechanism for 7-Azaindoles in Pure Water. Journal of the American Chemical Society, 2001. 123(15): p. 3599-3600.
14.Wu, Y.-S., et al., Water-Catalyzed Excited-State Proton-Transfer Reactions in 7-Azaindole and Its Analogues. The Journal of Physical Chemistry B, 2015. 119(6): p. 2302-2309.
15.Kwon, O.H., et al., Excited‐State Triple Proton Transfer of 7‐Hydroxyquinoline along a Hydrogen‐Bonded Alcohol Chain: Vibrationally Assisted Proton Tunneling. Angewandte Chemie, 2006. 118(3): p. 429-433.
16.Kohtani, S., A. Tagami, and R. Nakagaki, Excited-state proton transfer of 7-hydroxyquinoline in a non-polar medium: mechanism of triple proton transfer in the hydrogen-bonded system. Chemical Physics Letters, 2000. 316(1-2): p. 88-93.
17.Chen, Y.-T., et al., A study of the competitive multiple hydrogen bonding effect and its associated excited-state proton transfer tautomerism. Physical Chemistry Chemical Physics, 2017. 19(42): p. 28641-28646.
18.Peng, C.-Y., et al., Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde. Journal of the American Chemical Society, 2015. 137(45): p. 14349-14357.
19.Ma, Y., et al., Effect of Different Substituted Groups on Excited-State Intramolecular Proton Transfer of 1-(Acylamino)-anthraquinons. The Journal of Physical Chemistry C, 2017. 121(27): p. 14779-14786.
20.Tseng, H.W., et al., Harnessing Excited-State Intramolecular Proton-Transfer Reaction via a Series of Amino-Type Hydrogen-Bonding Molecules. J Phys Chem Lett, 2015. 6(8): p. 1477-86.

Part 2.
1.Hamasaki, K., et al., Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. Journal of the American Chemical Society, 1993. 115(12): p. 5035-5040.
2.Sasaki, S., G.P. Drummen, and G.-i. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C, 2016. 4(14): p. 2731-2743.
3.Hsieh, C.-C., C.-M. Jiang, and P.-T. Chou, Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of Chemical Research, 2010. 43(10): p. 1364-1374.
4.Seo, J., S. Kim, and S.Y. Park, Strong Solvatochromic Fluorescence from the Intramolecular Charge-Transfer State Created by Excited-State Intramolecular Proton Transfer. Journal of the American Chemical Society, 2004. 126(36): p. 11154-11155.
5.Grabowski, Z.R., K. Rotkiewicz, and A. Siemiarczuk, Dual fluorescence of donor-acceptor molecules and the twisted intramolecular charge transfer (TICT) states. Journal of Luminescence, 1979. 18: p. 420-424.
6.Grabowski, Z.R., K. Rotkiewicz, and W. Rettig, Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chemical reviews, 2003. 103(10): p. 3899-4032.
7.Zachariasse, K.A., et al., Intramolecular charge transfer with the planarized 4-aminobenzonitrile 1-tert-butyl-6-cyano-1, 2, 3, 4-tetrahydroquinoline (NTC6). Journal of the American Chemical Society, 2004. 126(6): p. 1705-1715.
8.Rettig, W., Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angewandte Chemie International Edition in English, 1986. 25(11): p. 971-988.
9.Sobolewski, A.L. and W. Domcke, Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization. Chemical physics letters, 1996. 259(1-2): p. 119-127.
10.Kwok, W., et al., Time-resolved resonance Raman spectra of the intramolecular charge transfer state of DMABN. Chemical Physics Letters, 2000. 322(5): p. 395-400.
11.Zachariasse, K., et al., Intramolecular charge transfer in the excited state. Kinetics and configurational changes. Journal of Photochemistry and Photobiology A: Chemistry, 1996. 102(1): p. 59-70.
12.Köhler, G., P. Wolschann, and K. Rotkiewicz. Solvent effects on intramolecular charge separation. in Proceedings of the Indian Academy of Sciences-Chemical Sciences. 1992. Springer.
13.Pang, Y.H., et al., Study on photophysical properties of intramolecular charge transfer (ICT) compound: 4-(diphenylamino) biphenyl-4′-boronic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2005. 170(1): p. 15-19.
14.Zhu, L., et al., A twisted intramolecular charge transfer probe for rapid and specific detection of trace biological SO 2 derivatives and bio-imaging applications. Chemical Communications, 2015. 51(6): p. 1154-1156.
15.Wang, E., et al., Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. Journal of Materials Chemistry C, 2014. 2(10): p. 1801-1807.
16.Haberhauer, G., R. Gleiter, and C. Burkhart, Planarized intramolecular charge transfer: A concept for fluorophores with both large stokes shifts and high fluorescence quantum yields. Chemistry-A European Journal, 2016. 22(3): p. 971-978.
17.Haberhauer, G., Planarized and Twisted Intramolecular Charge Transfer: A Concept for Fluorophores Showing Two Independent Rotations in Excited State. Chemistry-A European Journal, 2017. 23(39): p. 9288-9296.
18.Staněk, T., et al., Formation of planarized intramolecular charge-transfer state in dichlorotriazinyl-pyrene fluorescent probe: TD-DFT and resonance Raman study. Dyes and Pigments, 2017. 141: p. 121-127.
19.Zhang, Z., et al., Spectroscopic and theoretical investigations on intramolecular charge transfer phenomenon in 1-3-dioxolane derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 190: p. 324-331.
20.Hynes, J., et al., N-Amination of Pyrrole and Indole Heterocycles with Monochloramine (NH2Cl). The Journal of Organic Chemistry, 2004. 69(4): p. 1368-1371.
21.Glinkerman, C.M. and D.L. Boger, Cycloadditions of 1,2,3-Triazines Bearing C5-Electron Donating Substituents: Robust Pyrimidine Synthesis. Organic Letters, 2015. 17(16): p. 4002-4005.
22.Panchenko, P.A., et al., Controlling photophysics of styrylnaphthalimides through TICT, fluorescence and E, Z-photoisomerization interplay. Physical Chemistry Chemical Physics, 2017. 19(2): p. 1244-1256.
23.Jones, G., et al., Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. The Journal of Physical Chemistry, 1985. 89(2): p. 294-300.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top