|
Part 1. 1.Huang, J., et al., A spectroscopic study of the excited state proton transfer processes of (8-bromo-7-hydroxyquinolin-2-yl) methyl-protected phenol in aqueous solutions. Photochemical & Photobiological Sciences, 2017. 16(4): p. 575-584. 2.Park, H.J., et al., Excited-State Tautomerization Dynamics of 7-Hydroxyquinoline in β-Cyclodextrin. The Journal of Physical Chemistry B, 2005. 109(9): p. 3938-3943. 3.Itoh, M., T. Adachi, and K. Tokumura, Time-resolved fluorescence and absorption spectra and two-step laser excitation fluorescence of the excited-state proton transfer in the methanol solution of 7-hydroxyquinoline. Journal of the American Chemical Society, 1984. 106(4): p. 850-855. 4.Prommin, C., et al., Theoretical Insights on Solvent Control of Intramolecular and Intermolecular Proton Transfer of 2-(2''-Hydroxyphenyl)benzimidazole. J Phys Chem A, 2017. 121(31): p. 5773-5784. 5.de Grotthius, C., LI. Memoir upon the decomposition of water, and of the bodies which it holds in solution, by means of galvanic electricity. The Philosophical Magazine, 1806. 25(100): p. 330-339. 6.Park, S.-Y., et al., Proton transport of water in acid–base reactions of 7-hydroxyquinoline. Chemical Communications, 2009(8): p. 926-928. 7.Kwon, O.H. and O.F. Mohammed, Water-wire catalysis in photoinduced acid-base reactions. Phys Chem Chem Phys, 2012. 14(25): p. 8974-80. 8.Chung, K.Y., et al., The Excited-State Triple Proton Transfer Reaction of 2,6-Diazaindoles and 2,6-Diazatryptophan in Aqueous Solution. J Am Chem Soc, 2017. 139(18): p. 6396-6402. 9.Tolbert, L.M. and K.M. Solntsev, Excited-State Proton Transfer: From Constrained Systems to “Super” Photoacids to Superfast Proton Transfer. Accounts of Chemical Research, 2002. 35(1): p. 19-27. 10.Ditkovich, J., D. Pines, and E. Pines, Controlling reactivity by remote protonation of a basic side group in a bifunctional photoacid. Phys Chem Chem Phys, 2016. 18(24): p. 16106-15. 11.Penedo, J.C., M. Mosquera, and F. Rodríguez-Prieto, Role of Hydrogen-Bonded Adducts in Excited-State Proton-Transfer Processes. The Journal of Physical Chemistry A, 2000. 104(32): p. 7429-7441. 12.Brenlla, A., et al., Moderately Strong Photoacid Dissociates in Alcohols with High Transient Concentration of the Proton-Transfer Contact Pair. The Journal of Physical Chemistry Letters, 2014. 5(6): p. 989-994. 13.Chou, P.-T., et al., Water-Catalyzed Excited-State Double Proton Transfer in 3-Cyano-7-azaindole: The Resolution of the Proton-Transfer Mechanism for 7-Azaindoles in Pure Water. Journal of the American Chemical Society, 2001. 123(15): p. 3599-3600. 14.Wu, Y.-S., et al., Water-Catalyzed Excited-State Proton-Transfer Reactions in 7-Azaindole and Its Analogues. The Journal of Physical Chemistry B, 2015. 119(6): p. 2302-2309. 15.Kwon, O.H., et al., Excited‐State Triple Proton Transfer of 7‐Hydroxyquinoline along a Hydrogen‐Bonded Alcohol Chain: Vibrationally Assisted Proton Tunneling. Angewandte Chemie, 2006. 118(3): p. 429-433. 16.Kohtani, S., A. Tagami, and R. Nakagaki, Excited-state proton transfer of 7-hydroxyquinoline in a non-polar medium: mechanism of triple proton transfer in the hydrogen-bonded system. Chemical Physics Letters, 2000. 316(1-2): p. 88-93. 17.Chen, Y.-T., et al., A study of the competitive multiple hydrogen bonding effect and its associated excited-state proton transfer tautomerism. Physical Chemistry Chemical Physics, 2017. 19(42): p. 28641-28646. 18.Peng, C.-Y., et al., Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde. Journal of the American Chemical Society, 2015. 137(45): p. 14349-14357. 19.Ma, Y., et al., Effect of Different Substituted Groups on Excited-State Intramolecular Proton Transfer of 1-(Acylamino)-anthraquinons. The Journal of Physical Chemistry C, 2017. 121(27): p. 14779-14786. 20.Tseng, H.W., et al., Harnessing Excited-State Intramolecular Proton-Transfer Reaction via a Series of Amino-Type Hydrogen-Bonding Molecules. J Phys Chem Lett, 2015. 6(8): p. 1477-86.
Part 2. 1.Hamasaki, K., et al., Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. Journal of the American Chemical Society, 1993. 115(12): p. 5035-5040. 2.Sasaki, S., G.P. Drummen, and G.-i. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C, 2016. 4(14): p. 2731-2743. 3.Hsieh, C.-C., C.-M. Jiang, and P.-T. Chou, Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of Chemical Research, 2010. 43(10): p. 1364-1374. 4.Seo, J., S. Kim, and S.Y. Park, Strong Solvatochromic Fluorescence from the Intramolecular Charge-Transfer State Created by Excited-State Intramolecular Proton Transfer. Journal of the American Chemical Society, 2004. 126(36): p. 11154-11155. 5.Grabowski, Z.R., K. Rotkiewicz, and A. Siemiarczuk, Dual fluorescence of donor-acceptor molecules and the twisted intramolecular charge transfer (TICT) states. Journal of Luminescence, 1979. 18: p. 420-424. 6.Grabowski, Z.R., K. Rotkiewicz, and W. Rettig, Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chemical reviews, 2003. 103(10): p. 3899-4032. 7.Zachariasse, K.A., et al., Intramolecular charge transfer with the planarized 4-aminobenzonitrile 1-tert-butyl-6-cyano-1, 2, 3, 4-tetrahydroquinoline (NTC6). Journal of the American Chemical Society, 2004. 126(6): p. 1705-1715. 8.Rettig, W., Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angewandte Chemie International Edition in English, 1986. 25(11): p. 971-988. 9.Sobolewski, A.L. and W. Domcke, Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization. Chemical physics letters, 1996. 259(1-2): p. 119-127. 10.Kwok, W., et al., Time-resolved resonance Raman spectra of the intramolecular charge transfer state of DMABN. Chemical Physics Letters, 2000. 322(5): p. 395-400. 11.Zachariasse, K., et al., Intramolecular charge transfer in the excited state. Kinetics and configurational changes. Journal of Photochemistry and Photobiology A: Chemistry, 1996. 102(1): p. 59-70. 12.Köhler, G., P. Wolschann, and K. Rotkiewicz. Solvent effects on intramolecular charge separation. in Proceedings of the Indian Academy of Sciences-Chemical Sciences. 1992. Springer. 13.Pang, Y.H., et al., Study on photophysical properties of intramolecular charge transfer (ICT) compound: 4-(diphenylamino) biphenyl-4′-boronic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2005. 170(1): p. 15-19. 14.Zhu, L., et al., A twisted intramolecular charge transfer probe for rapid and specific detection of trace biological SO 2 derivatives and bio-imaging applications. Chemical Communications, 2015. 51(6): p. 1154-1156. 15.Wang, E., et al., Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. Journal of Materials Chemistry C, 2014. 2(10): p. 1801-1807. 16.Haberhauer, G., R. Gleiter, and C. Burkhart, Planarized intramolecular charge transfer: A concept for fluorophores with both large stokes shifts and high fluorescence quantum yields. Chemistry-A European Journal, 2016. 22(3): p. 971-978. 17.Haberhauer, G., Planarized and Twisted Intramolecular Charge Transfer: A Concept for Fluorophores Showing Two Independent Rotations in Excited State. Chemistry-A European Journal, 2017. 23(39): p. 9288-9296. 18.Staněk, T., et al., Formation of planarized intramolecular charge-transfer state in dichlorotriazinyl-pyrene fluorescent probe: TD-DFT and resonance Raman study. Dyes and Pigments, 2017. 141: p. 121-127. 19.Zhang, Z., et al., Spectroscopic and theoretical investigations on intramolecular charge transfer phenomenon in 1-3-dioxolane derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 190: p. 324-331. 20.Hynes, J., et al., N-Amination of Pyrrole and Indole Heterocycles with Monochloramine (NH2Cl). The Journal of Organic Chemistry, 2004. 69(4): p. 1368-1371. 21.Glinkerman, C.M. and D.L. Boger, Cycloadditions of 1,2,3-Triazines Bearing C5-Electron Donating Substituents: Robust Pyrimidine Synthesis. Organic Letters, 2015. 17(16): p. 4002-4005. 22.Panchenko, P.A., et al., Controlling photophysics of styrylnaphthalimides through TICT, fluorescence and E, Z-photoisomerization interplay. Physical Chemistry Chemical Physics, 2017. 19(2): p. 1244-1256. 23.Jones, G., et al., Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. The Journal of Physical Chemistry, 1985. 89(2): p. 294-300.
|